期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
LASG Global AGCM with a Two-moment Cloud Microphysics Scheme:Energy Balance and Cloud Radiative Forcing Characteristics
1
作者 Lei WANG Qing BAO +9 位作者 Wei-Chyung WANG Yimin LIU Guo-Xiong WU Linjiong ZHOU JiANDong LI Hua GONG Guokui NIAN Jinxiao LI Xiaocong WANG Bian HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第7期697-710,共14页
Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics... Cloud dominates influence factors of atmospheric radiation, while aerosol–cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment(mass and number) cloud microphysics scheme, which significantly improved the treatment of the coupled processes of aerosols and clouds, was incorporated into version 1.1 of the IAP/LASG global Finite-volume Atmospheric Model(FAMIL1.1). For illustrative purposes, the characteristics of the energy balance and cloud radiative forcing(CRF) in an AMIP-type simulation with prescribed aerosols were compared with those in observational/reanalysis data. Even within the constraints of the prescribed aerosol mass, the model simulated global mean energy balance at the top of the atmosphere(TOA) and at the Earth’s surface, as well as their seasonal variation, are in good agreement with the observational data. The maximum deviation terms lie in the surface downwelling longwave radiation and surface latent heat flux, which are 3.5 W m-2(1%) and 3 W m-2(3.5%), individually. The spatial correlations of the annual TOA net radiation flux and the net CRF between simulation and observation were around 0.97 and 0.90, respectively. A major weakness is that FAMIL1.1 predicts more liquid water content and less ice water content over most oceans. Detailed comparisons are presented for a number of regions, with a focus on the Asian monsoon region(AMR). The results indicate that FAMIL1.1 well reproduces the summer–winter contrast for both the geographical distribution of the longwave CRF and shortwave CRF over the AMR. Finally, the model bias and possible solutions, as well as further works to develop FAMIL1.1 are discussed. 展开更多
关键词 two-moment CLOUD MICROPHYSICS scheme aerosol–cloud interactions energy balance CLOUD radiative forcing Asian monsoon region
下载PDF
Two-moment Bulk Stratiform Cloud Microphysics in the Grid-point Atmospheric Model of IAP LASG (GAMIL) 被引量:2
2
作者 史湘军 王斌 +1 位作者 Xiaohong LIU Minghuai WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期868-883,共16页
A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LA... A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable rep- resentation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. ~rthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account. 展开更多
关键词 two-moment cloud microphysics scheme atmospheric model
下载PDF
两类双参数云微物理方案对夏季强降水事件模拟能力的对比研究 被引量:7
3
作者 王文君 朱彬 +4 位作者 杨素英 陆其峰 刘宁薇 李岩 王梓航 《大气科学学报》 CSCD 北大核心 2018年第6期721-730,共10页
运用中尺度WRF模式,分别采用Morrison(MOR)和Milbrandt-Yau(MY)双参数化云微物理方案,对2010年7月20—21日辽宁省的一次强降水过程进行模拟,通过对比分析两个方案所对应的地表累积降水量、降水强度、云中微物理量的模拟结果,评估两个双... 运用中尺度WRF模式,分别采用Morrison(MOR)和Milbrandt-Yau(MY)双参数化云微物理方案,对2010年7月20—21日辽宁省的一次强降水过程进行模拟,通过对比分析两个方案所对应的地表累积降水量、降水强度、云中微物理量的模拟结果,评估两个双参数方案对强降水事件的模拟能力及主要微物理过程的差异。结果表明,在对雨带和强降水中心的位置上,MOR方案的模拟能力优于MY方案,但MY方案对强降水中心强度模拟能力则优于MOR方案;两方案对强降水宏观特征的模拟差异在一定程度上体现了它们在微物理具体方案上的差异,相比MY方案而言,MOR方案模拟降水发展期的垂直水汽通量高,使得雪晶的凝华增长、碰连增长增强,从而导致MOR方案的冰晶含量低,雪晶含量高,通过雪晶的凇附作用形成的霰含量也比MY方案高,霰的凇附增长消耗了大量过冷水,使冷云中云滴(过冷水)含量减少; MOR方案模拟得到的600 hPa到地表的雨滴直径均为1 mm,与实际雨滴直径的观测值不符,需要未来进一步开展研究,对原方案进行优化。 展开更多
关键词 双参数云微物理方案 强降水 数值模拟
下载PDF
NUMERICAL SIMULATION OF CLOUD MICROPHYSICAL CHARACTERISTICS OF LANDFALL TYPHOON KROSA 被引量:3
4
作者 花丛 刘奇俊 《Journal of Tropical Meteorology》 SCIE 2013年第3期284-296,共13页
In this study,the super typhoon KROSA(2007)was simulated using a mesoscale numerical model Global and Regional Assimilation and Prediction System(GRAPES)with a two-moment mixed-phase microphysics scheme.Local rainfall... In this study,the super typhoon KROSA(2007)was simulated using a mesoscale numerical model Global and Regional Assimilation and Prediction System(GRAPES)with a two-moment mixed-phase microphysics scheme.Local rainfall observations,radar and satellite data were also used to analyze the precipitation structure and microphysical features.It was shown that low-level jets and unstable temperature stratification provided this precipitation process with favorable weather condition.Heavy rainfall centers were located in the north and east part of KROSA with the maxima of 6-hourly total rainfall during the simulation more than 100 mm.The quantities of column solid water and column liquid water were generally equivalent,indicating the important role of ice phase in precipitation formation.Results of CloudSat showed that strong convection occurred in the eyewall around the cyclonic center.According to the simulation results,heavy precipitation in the northeast part of the typhoon was mainly triggered by convective clouds,accompanied by the strongest updraft under the melting level.In the southwest part of KROSA,precipitation intensity was rather homogeneous.The ascending center occurred in high-level cold clouds,favoring the formation and growth of ice particles. 展开更多
关键词 TYPHOON heavy rainfall KROSA GRAPES model two-moment MIXED-PHASE MICROPHYSICS scheme CLOUD MICROPHYSICS
下载PDF
Preliminary Evaluation of a Model for Stratiform Cloud Microphysical Structure by Observation and Simulation
5
作者 ZHAO Zhen LEI Heng-Chi 《Atmospheric and Oceanic Science Letters》 2009年第3期172-176,共5页
The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurem... The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurements, and the NCAR/Penn State Mesoscale Model Version 5 (MM5) simulation with a two-moment microphysics scheme. The coexistence of measured supercooled liquid water and small ice particles produces snow particles below the cloud top in the second layer. Peak number concentration and mean diameter of cloud water and raindrop appear in the third warm layer. A thin dry layer just below the melting layer is also observed. The predicted precipitation is tested by equitable threat score. The melting layer is clearly defined in the radar image and model radar reflectivity output is agreement with the observations. The model results provide features of the microphysical structure for every layer of "three-layer" model at Yan'an station. For both observation and model simulation, the "three-layer" model explains the stratiform precipitation formation completely and comprehensively. 展开更多
关键词 stratiform cloud "three-layer" model aircraft observation two-moment scheme
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部