期刊文献+
共找到7,481篇文章
< 1 2 250 >
每页显示 20 50 100
AHermitian C^(2) Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates
1
作者 Chih-Ping Wu Ruei-Syuan Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期917-949,共33页
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend... This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant. 展开更多
关键词 Consistent/modified couple stress theory differential reproducing kernel methods microplates point collocation methods static flexural 3D microstructure-dependent analysis
下载PDF
Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method
2
作者 Xiaojun Huang Liaojun Zhang +1 位作者 Hanbo Cui Gaoxing Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1647-1668,共22页
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node... This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature. 展开更多
关键词 Timoshenko beams functionally graded materials dynamic characteristics natural frequency improved differential quadrature method
下载PDF
Euler’s First-Order Explicit Method–Peridynamic Differential Operator for Solving Population Balance Equations of the Crystallization Process
3
作者 Chunlei Ruan Cengceng Dong +2 位作者 Kunfeng Liang Zhijun Liu Xinru Bao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期3033-3049,共17页
Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridyna... Using Euler’s first-order explicit(EE)method and the peridynamic differential operator(PDDO)to discretize the time and internal crystal-size derivatives,respectively,the Euler’s first-order explicit method–peridynamic differential operator(EE–PDDO)was obtained for solving the one-dimensional population balance equation in crystallization.Four different conditions during crystallization were studied:size-independent growth,sizedependent growth in a batch process,nucleation and size-independent growth,and nucleation and size-dependent growth in a continuous process.The high accuracy of the EE–PDDO method was confirmed by comparing it with the numerical results obtained using the second-order upwind and HR-van methods.The method is characterized by non-oscillation and high accuracy,especially in the discontinuous and sharp crystal size distribution.The stability of the EE–PDDO method,choice of weight function in the PDDO method,and optimal time step are also discussed. 展开更多
关键词 Population balance equation CRYSTALLIZATION peridynamic differential operator Euler’s first-order explicit method
下载PDF
Comparative Studies between Picard’s and Taylor’s Methods of Numerical Solutions of First Ordinary Order Differential Equations Arising from Real-Life Problems
4
作者 Khalid Abd Elrazig Awad Alla Elnour 《Journal of Applied Mathematics and Physics》 2024年第3期877-896,共20页
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’... To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section. 展开更多
关键词 First-Order differential Equations Picard method Taylor Series method Numerical Solutions Numerical Examples MATLAB Software
下载PDF
Legendre-Weighted Residual Methods for System of Fractional Order Differential Equations
5
作者 Umme Ruman Md. Shafiqul Islam 《Journal of Applied Mathematics and Physics》 2024年第9期3163-3184,共22页
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ... The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations. 展开更多
关键词 Fractional differential Equations System of Fractional Order BVPs Weighted Residual methods Modified Legendre Polynomials
下载PDF
An Extended Numerical Method by Stancu Polynomials for Solution of Integro-Differential Equations Arising in Oscillating Magnetic Fields
6
作者 Neşe İşler Acar 《Advances in Pure Mathematics》 2024年第10期785-796,共12页
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b... In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method. 展开更多
关键词 Stancu Polynomials Collocation method Integro-differential Equations Linear Equation Systems Matrix Equations
下载PDF
An inverse analysis of fluid flow through granular media using differentiable lattice Boltzmann method 被引量:1
7
作者 Qiuyu Wang Krishna Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2077-2090,共14页
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi... This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications. 展开更多
关键词 Inverse problem Fluid flow Granular media Automatic differentiation(AD) Lattice Boltzmann method(LBM)
下载PDF
Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems
8
作者 Chunlei Ruan Cengceng Dong +2 位作者 Zeyue Zhang Boyu Chen Zhijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2707-2728,共22页
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t... Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions. 展开更多
关键词 Peridynamic differential operator finite difference method STABILITY transient heat conduction problem
下载PDF
A Collocation Technique via Pell-Lucas Polynomials to Solve Fractional Differential EquationModel for HIV/AIDS with Treatment Compartment
9
作者 Gamze Yıldırım Suayip Yüzbası 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期281-310,共30页
In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatmen... In this study,a numerical method based on the Pell-Lucas polynomials(PLPs)is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment.The HIV/AIDS mathematical model with a treatment compartment is divided into five classes,namely,susceptible patients(S),HIV-positive individuals(I),individuals with full-blown AIDS but not receiving ARV treatment(A),individuals being treated(T),and individuals who have changed their sexual habits sufficiently(R).According to the method,by utilizing the PLPs and the collocation points,we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into a nonlinear system of the algebraic equations.Also,the error analysis is presented for the Pell-Lucas approximation method.The aim of this study is to observe the behavior of five populations after 200 days when drug treatment is applied to HIV-infectious and full-blown AIDS people.To demonstrate the usefulness of this method,the applications are made on the numerical example with the help of MATLAB.In addition,four cases of the fractional order derivative(p=1,p=0.95,p=0.9,p=0.85)are examined in the range[0,200].Owing to applications,we figured out that the outcomes have quite decent errors.Also,we understand that the errors decrease when the value of N increases.The figures in this study are created in MATLAB.The outcomes indicate that the presented method is reasonably sufficient and correct. 展开更多
关键词 Collocation method fractional differential equations HIV/AIDS epidemic model Pell-Lucas polynomials
下载PDF
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
10
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
下载PDF
From Differential Mode of Association to Tianxia Worldview:A Study on Chinese Entrepreneurial Spirit
11
作者 Chao Gang Qian Chen Wang Lei 《China Economist》 2024年第4期58-88,共31页
China has made significant strides in economic and social development since reform and opening up over the past four decades.This process has been influenced by the exceptional innovation and entrepreneurship of Chine... China has made significant strides in economic and social development since reform and opening up over the past four decades.This process has been influenced by the exceptional innovation and entrepreneurship of Chinese business leaders,as well as their profound sentiments of compassion for the world and their country.It is of great significance to foster and promote an entrepreneurial spirit with distinctive Chinese characteristics.Not only is such spirit essential to the high-quality development of enterprises and the economy,but it is also a critical impetus for achieving Chinese modernization.Nevertheless,there is still a paucity of adequate theoretical discourse on the cultural origins and entrepreneurial spirit of outstanding Chinese business leaders.This paper employs the classical grounded theory method to conduct a 10-year follow-up research on 11 representative entrepreneurs and their enterprises.The results indicate that these entrepreneurs exhibit an evolving worldview along the paths of“self-cultivation and moral conduct”,“assisting employees to achieve”,“multilateral symbiosis”,and“the oneness of existence”when interacting with themselves,employees,partners,the general public,and all things in nature.Such entrepreneurial spirit is embodied in this paper as the“Tianxia(all-under-heaven)worldview”.Through theoretical construction,this study defines the concept of“Tianxia worldview”and extensively examines the distinctions and connections between the broadminded“Tianxia worldview”and the kinship-centered“differential mode of association”in terms of internal structure,value orientation,and applicable groups.It is posited that the transition from the former to the latter is a continuous process of transcendence and evolution of the individual mindset.This study has theoretical significance in the context of advancing the research on the Chinese entrepreneurial spirit,transcending the constraints of the management approach based on the“differential mode of association”,and enhancing the research on social responsibility from the perspective of“benefit corporations”.It also has practical value in overcoming the trust dilemma and development impediment of family businesses,ensuring that enterprises consciously fulfill their social responsibilities in a broader social context,and achieving common prosperity and progress for both enterprises and society. 展开更多
关键词 Tianxia worldview differential mode of association Chinese entrepreneurial spirit corporate social responsibility grounded theory method
下载PDF
Furnace Temperature Curve Optimization Model Based on Differential Evolution Algorithm
12
作者 Yiming Cheng 《Journal of Electronic Research and Application》 2024年第4期64-80,共17页
When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on ... When soldering electronic components onto circuit boards,the temperature curves of the reflow ovens across different zones and the conveyor belt speed significantly influence the product quality.This study focuses on optimizing the furnace temperature curve under varying settings of reflow oven zone temperatures and conveyor belt speeds.To address this,the research sequentially develops a heat transfer model for reflow soldering,an optimization model for reflow furnace conditions using the differential evolution algorithm,and an evaluation and decision model combining the differential evolution algorithm with the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)method.This approach aims to determine the optimal furnace temperature curve,zone temperatures of the reflow oven,and the conveyor belt speed. 展开更多
关键词 Furnace temperature curve Difference equations differential evolution algorithms TOPSIS methods
下载PDF
On the Approximation of Fractal-Fractional Differential Equations Using Numerical Inverse Laplace Transform Methods
13
作者 Kamran Siraj Ahmad +2 位作者 Kamal Shah Thabet Abdeljawad Bahaaeldin Abdalla 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2743-2765,共23页
Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to sol... Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method. 展开更多
关键词 Fractal-fractional differential equation power law kernel exponential decay kernel Mittag-Leffler kernel Laplace transform Euler’s method Talbot’s method Stehfest’s method
下载PDF
On Time Fractional Partial Differential Equations and Their Solution by Certain Formable Transform Decomposition Method
14
作者 Rania Saadeh Ahmad Qazza +1 位作者 Aliaa Burqan Shrideh Al-Omari 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3121-3139,共19页
This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,w... This paper aims to investigate a new efficient method for solving time fractional partial differential equations.In this orientation,a reliable formable transform decomposition method has been designed and developed,which is a novel combination of the formable integral transform and the decomposition method.Basically,certain accurate solutions for time-fractional partial differential equations have been presented.Themethod under concern demandsmore simple calculations and fewer efforts compared to the existingmethods.Besides,the posed formable transformdecompositionmethod has been utilized to yield a series solution for given fractional partial differential equations.Moreover,several interesting formulas relevant to the formable integral transform are applied to fractional operators which are performed as an excellent application to the existing theory.Furthermore,the formable transform decomposition method has been employed for finding a series solution to a time-fractional Klein-Gordon equation.Over and above,some numerical simulations are also provided to ensure reliability and accuracy of the new approach. 展开更多
关键词 Caputo derivative fractional differential equations formable transform time-fractional klein-gordon equation decomposition method
下载PDF
Adomian Modification Methods for the Solution of Chebyshev’s Differential Equations
15
作者 Mariam Al Mazmumy Aishah Alsulami +1 位作者 Huda Bakodah Nawal Alzaid 《Applied Mathematics》 2023年第8期512-530,共19页
The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of ... The current study examines the important class of Chebyshev’s differential equations via the application of the efficient Adomian Decomposition Method (ADM) and its modifications. We have proved the effectiveness of the employed methods by acquiring exact analytical solutions for the governing equations in most cases;while minimal noisy error terms have been observed in a particular method modification. Above all, the presented approaches have rightly affirmed the exactitude of the available literature. More to the point, the application of this methodology could be extended to examine various forms of high-order differential equations, as approximate exact solutions are rapidly attained with less computation stress. 展开更多
关键词 ADM Modifications methods Chebyshev’s differential Equations IVPs Series Solutions
下载PDF
Solving Different Types of Differential Equations Using Modified and New Modified Adomian Decomposition Methods
16
作者 Justina Mulenga Patrick Azere Phiri 《Journal of Applied Mathematics and Physics》 2023年第6期1656-1676,共21页
The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann cond... The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme. 展开更多
关键词 Neumann Conditions Modified Adomian Decomposition method Solution Scheme New Modified Adomian Decomposition method differential Equations
下载PDF
Solution of Laguerre’s Differential Equations via Modified Adomian Decomposition Method
17
作者 Mariam Al-Mazmumy Aishah A. Alsulami 《Journal of Applied Mathematics and Physics》 2023年第1期85-100,共16页
This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an... This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of. 展开更多
关键词 Modification method Singular Ordinary differential Equations Laguerre’s Equation Associated Laguerre’s Equation
下载PDF
Galerkin Method for Numerical Solution of Volterra Integro-Differential Equations with Certain Orthogonal Basis Function
18
作者 Omotayo Adebayo Taiwo Liman Kibokun Alhassan +1 位作者 Olutunde Samuel Odetunde Olatayo Olusegun Alabi 《International Journal of Modern Nonlinear Theory and Application》 2023年第2期68-80,共13页
This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomi... This paper concerns the implementation of the orthogonal polynomials using the Galerkin method for solving Volterra integro-differential and Fredholm integro-differential equations. The constructed orthogonal polynomials are used as basis functions in the assumed solution employed. Numerical examples for some selected problems are provided and the results obtained show that the Galerkin method with orthogonal polynomials as basis functions performed creditably well in terms of absolute errors obtained. 展开更多
关键词 Galerkin method Integro-differential Equation Orthogonal Polynomials Basis Function Approximate Solution
下载PDF
ANALYSIS OF NONLINEAR PIEZOELECTRIC CIRCULAR SHALLOW SPHERICAL SHELLS BY DIFFERENTIAL QUADRATURE ELEMENT METHOD
19
作者 王永亮 王鑫伟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期130-136,共7页
The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ... The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations. 展开更多
关键词 differential quadrature element method non linearity PIEZOELECTRICITY circular shallow spherical shell
下载PDF
An Enhanced Adaptive Differential Evolution Approach for Constrained Optimization Problems 被引量:1
20
作者 Wenchao Yi Zhilei Lin +2 位作者 Yong Chen Zhi Pei Jiansha Lu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2841-2860,共20页
Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest s... Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest selection mechanism is proposed to integrate the current mutation strategy in constrained optimization problems.Based on the improved pbest selection method,an adaptive differential evolution approach is proposed,which helps the population jump out of the infeasible region.If all the individuals are infeasible,the top 5%of infeasible individuals are selected.In addition,a modified truncatedε-level method is proposed to avoid trapping in infeasible regions.The proposed adaptive differential evolution approach with an improvedεconstraint processmechanism(IεJADE)is examined on CEC 2006 and CEC 2010 constrained benchmark function series.Besides,a standard IEEE-30 bus test system is studied on the efficiency of the IεJADE.The numerical analysis verifies the IεJADE algorithm is effective in comparisonwith other effective algorithms. 展开更多
关键词 pbest selection mechanism adaptive differential evolution εconstrained method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部