This article investigates convergence, transforms and q-square summability of banach space valued quasi-eventual martingales. Some basic results of Banach space valued martingales are improved and extended.
In this paper,we establish the Hàjek-Rèniy type inequality for Banach space valued martingales generalizing the recent results of Tómcs and L'ibor [1].Then p-uniformly smoothable Banach space is c...In this paper,we establish the Hàjek-Rèniy type inequality for Banach space valued martingales generalizing the recent results of Tómcs and L'ibor [1].Then p-uniformly smoothable Banach space is characterized in terms of the Hàjek-Rèniy type inequality for Banach space valued martingales.Those results generalize the recent results of Gan Shixin [2].展开更多
In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b...In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b n,n≥1} with 0<b n↑∞ ,any integer n≥1 ,there exits a constant C=C p>0 (only depending on p ) such thatP( sup j≥nji=1D ib j≥ε)≤Cε -p (∞j=n+1E‖D j‖ pb p j+nj=1E‖D j‖ pb p n) In the other direction,we prove some strong laws of large numbers and the integrability of the maximal functions for B valued random variable sequences by using this inequality and the Hajeck Renyi inequality we have obtained recently.Some known results are extended and improved.展开更多
The interpolation spaces between Banach space valued martingale Hardy spaces, between Hardy and BMO spaces are identified respectively. Some results obtained here are connected closely with the convexity and smooth...The interpolation spaces between Banach space valued martingale Hardy spaces, between Hardy and BMO spaces are identified respectively. Some results obtained here are connected closely with the convexity and smoothness of the Banach space which the martingales take values in.展开更多
For Banach space-valued martingale, two new BMO spaces, namely BMO (X), resp-BMO (X), and two new sharp operators, namely, resp. generated by the condition-al p-mean-square resp. p-mean-square operator are introduce...For Banach space-valued martingale, two new BMO spaces, namely BMO (X), resp-BMO (X), and two new sharp operators, namely, resp. generated by the condition-al p-mean-square resp. p-mean-square operator are introduced, and then, the connections betweenBMO (X) and BMO;, BMO(X) and BMO and and are investigated. The resultsobtained here yield a new charactrization of the convexity and smoothness of Banach space.展开更多
In this paper, we prove that under the F<sub>4</sub> condition, any L log<sup>+</sup> L bounded two-parameter Banach space valued martingale converges almost surely to an integrable Banach spac...In this paper, we prove that under the F<sub>4</sub> condition, any L log<sup>+</sup> L bounded two-parameter Banach space valued martingale converges almost surely to an integrable Banach space valued random variable if and only if the Banach space has the Radon-Nikodym property. We further prove that the above conclusion remains true if the F<sub>4</sub> condition is replaced by the weaker local F<sub>4</sub> condition.展开更多
Let {Xn, n≥1} be a martingale difference sequence and {a nk , 1?k?n,n?1} an array of constant real numbers. The limiting behavior of weighted partial sums ∑ k=1 n a nk X k is investigated and some new results are ob...Let {Xn, n≥1} be a martingale difference sequence and {a nk , 1?k?n,n?1} an array of constant real numbers. The limiting behavior of weighted partial sums ∑ k=1 n a nk X k is investigated and some new results are obtained.展开更多
This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgen...This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgensen and Pisier theorem are obtained. Key words strong law of large numbers - Banach space valued random variable sequence - p-smoothable Banach space CLC number O 211.4 - O 211.6 Foundation item: Supported by the National Natural Science Foundation of China (10071058)Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.展开更多
Several theorems for atomic decompositions of Banach-space-valued martingales are proved. As their applications, the relationship among some martingale spaces such asH α(X) andρ H α in the case 0< α? are studie...Several theorems for atomic decompositions of Banach-space-valued martingales are proved. As their applications, the relationship among some martingale spaces such asH α(X) andρ H α in the case 0< α? are studied. It is shown that there is a close connection between the results and the smoothness and convexity of the value spaces.展开更多
基金Project supported by the National Natural Science Foundation of China
文摘This article investigates convergence, transforms and q-square summability of banach space valued quasi-eventual martingales. Some basic results of Banach space valued martingales are improved and extended.
基金Supported by the Youth Foundation of the Department of Education of Sichuan Province(07ZB042) Supported by Natural Science Foundation of the Department of Education of Sichuan Province(09ZC071)
文摘In this paper,we establish the Hàjek-Rèniy type inequality for Banach space valued martingales generalizing the recent results of Tómcs and L'ibor [1].Then p-uniformly smoothable Banach space is characterized in terms of the Hàjek-Rèniy type inequality for Banach space valued martingales.Those results generalize the recent results of Gan Shixin [2].
文摘In this paper we prove the following Hajek Renyi inequality:Let 0<p≤1 ,then for any Banach space B , any L p integrable B valued random variable sequence {D n,n≥1} ,any real number sequence {b n,n≥1} with 0<b n↑∞ ,any integer n≥1 ,there exits a constant C=C p>0 (only depending on p ) such thatP( sup j≥nji=1D ib j≥ε)≤Cε -p (∞j=n+1E‖D j‖ pb p j+nj=1E‖D j‖ pb p n) In the other direction,we prove some strong laws of large numbers and the integrability of the maximal functions for B valued random variable sequences by using this inequality and the Hajeck Renyi inequality we have obtained recently.Some known results are extended and improved.
文摘The interpolation spaces between Banach space valued martingale Hardy spaces, between Hardy and BMO spaces are identified respectively. Some results obtained here are connected closely with the convexity and smoothness of the Banach space which the martingales take values in.
文摘For Banach space-valued martingale, two new BMO spaces, namely BMO (X), resp-BMO (X), and two new sharp operators, namely, resp. generated by the condition-al p-mean-square resp. p-mean-square operator are introduced, and then, the connections betweenBMO (X) and BMO;, BMO(X) and BMO and and are investigated. The resultsobtained here yield a new charactrization of the convexity and smoothness of Banach space.
基金Project supported by the National Natural Science Foundation of Chinathe State Education Commission Ph. D. Station Foundation
文摘In this paper, we prove that under the F<sub>4</sub> condition, any L log<sup>+</sup> L bounded two-parameter Banach space valued martingale converges almost surely to an integrable Banach space valued random variable if and only if the Banach space has the Radon-Nikodym property. We further prove that the above conclusion remains true if the F<sub>4</sub> condition is replaced by the weaker local F<sub>4</sub> condition.
基金SupportedbytheNationalNaturalScienceFoundationofChina (No .10 0 710 5 8)and (No .10 0 710 19)
文摘Let {Xn, n≥1} be a martingale difference sequence and {a nk , 1?k?n,n?1} an array of constant real numbers. The limiting behavior of weighted partial sums ∑ k=1 n a nk X k is investigated and some new results are obtained.
文摘This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgensen and Pisier theorem are obtained. Key words strong law of large numbers - Banach space valued random variable sequence - p-smoothable Banach space CLC number O 211.4 - O 211.6 Foundation item: Supported by the National Natural Science Foundation of China (10071058)Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19771063).
文摘Several theorems for atomic decompositions of Banach-space-valued martingales are proved. As their applications, the relationship among some martingale spaces such asH α(X) andρ H α in the case 0< α? are studied. It is shown that there is a close connection between the results and the smoothness and convexity of the value spaces.