期刊文献+
共找到133,363篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of grain size reduction on high temperature oxidation of binary two-phase alloys 被引量:5
1
作者 李远士 牛焱 +1 位作者 吴维 付广艳 《中国有色金属学会会刊:英文版》 CSCD 2001年第5期644-648,共5页
The effect of grain size reduction on the high temperature oxidation of binary two phase alloys was discussed based on the recent research progress. The results show that for those two phase alloys with coarse grain p... The effect of grain size reduction on the high temperature oxidation of binary two phase alloys was discussed based on the recent research progress. The results show that for those two phase alloys with coarse grain prepared by the conventional methods, complex oxide scales are easily formed after oxidation under high oxygen pressure or under oxygen pressure below the stability limit of the less reactive component oxides. On the contrary, for the nano sized alloys, an exclusive external oxidation of the most reactive component usually occurs during oxidation in air or pure oxygen even for much lower content of the most reactive component. So the gain size reduction is not always beneficial to improve the oxidation resistance of the materials, but exhibits different effects depending mainly on the protective feature of the scales. The transition mechanisms between the different oxidation modes are discussed with respect to the thermodynamic and dynamic aspects. 展开更多
关键词 two phase alloy NANOCRYSTALLIZATION oxidation mode oxidation resistance
下载PDF
The effect of the 18R-LPSO phase on the fatigue behavior of extruded Mg/LPSO two-phase alloy through a comparative experimental-numerical study 被引量:3
2
作者 Fabien Briffod Takayuki Shiraiwa Manabu Enoki 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期130-143,共14页
The fatigue behavior of four extruded Mg-Y-Zn alloys containing different volume fractions of long-period stacking ordered(LPSO)grains was investigated through a comparative study combining experiments and crystal pla... The fatigue behavior of four extruded Mg-Y-Zn alloys containing different volume fractions of long-period stacking ordered(LPSO)grains was investigated through a comparative study combining experiments and crystal plasticity finite element simulations.Strain controlled low-cycle fatigue experiments were conducted at different strain amplitudes and revealed a limited cyclic hardening in Mg_(89)Zn_(4)Y_(7)alloy or softening in Mg_(99.2)Zn_(0.2)Y_(0.6)and Mg_(97)Zn_(1)Y_(2)alloys.A decrease in the fatigue life against the plastic strain with the increase in LPSO phase volume fraction was observed and was related the limited ductility of extruded LPSO grains.Stress-strain hysteresis curves were used to calibrate and validate a crystal plasticity model taking into account twinning and detwinning.The interaction of the different phases on the distribution of local micro-mechanical fields at the grain scale was then analyzed on synthetic microstructures under strain-controlled conditions.Deformation twinning activity was predicted in coarse unrecrystallized grains and tended to disappear with the increase in the LPSO phase volume fraction.Cleavage-like facets observed in LPSO grains were related to high tensile stress,especially at the Mg/LPSO interface,due to the limited number of deformation mechanisms in LPSO crystal to accommodate out-of-basal plane strain.The increase of the fatigue limit with the increase in LPSO phase volume fraction was finally associated with the decreasing presence of coarse unrecrystallizedα-Mg grains due to a higher dynamic recrystallization activity during the extrusion process. 展开更多
关键词 Magnesium alloy FATIGUE Long-period stacking ordered phase Crystal plasticity Finite element method
下载PDF
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
3
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser Gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
Effects of the nozzle structure and fluidized gas composition on the gas-particle two-phase jet characteristic in a powder fuel scramjet
4
作者 Changfei Zhuo Hongming Ding +2 位作者 Xiaobin Ren Hanyu Deng Xiong Chen 《Particuology》 SCIE EI CAS CSCD 2024年第9期166-179,共14页
The interaction between nozzle design and fluidization gas composition significantly influences the dynamics within a powder fuel scramjet's combustion chamber.To investigate this relationship,an experimental stud... The interaction between nozzle design and fluidization gas composition significantly influences the dynamics within a powder fuel scramjet's combustion chamber.To investigate this relationship,an experimental study utilized high-speed shadow imaging technology to explore the macroscopic aspects of powder fuel injection.The investigation examined various convergence angles,nozzle throat lengths,and fluidized gas compositions.Key findings include:During jet development,powder fuel initially concentrates near the axis,with non-convergence angle nozzles exhibiting longer concentrated distribution periods than convergence angle conditions.Decreasing nozzle convergence angles lead to increased penetration distance,frontal velocity,and radial diffusion distance during the initial stages of jet development.Additionally,stable jet shapes show larger divergence angles as nozzle convergence angle decreases,with the largest divergence angle observed atα=60°.In the initial 0-7 ms of jet development,the powder fuel jet demonstrates greater penetration distance and frontal velocity under certain conditions.Moreover,penetration distance and frontal velocity increase with throat length from 7 to 20 ms,accompanied by changes in divergence angles.Specifically,at a throat length(l)of 2 mm,the near-field divergence angle measures 46.50°,and the far-field divergence angle is 22.25°.Conversely,at l=8mm,the near-field divergence angle is 33.49°,and the far-field divergence angle is 23.21°.The fluidization gas composition minimally affects jet penetration distance and frontal velocity during the initial 0-3 ms.However,due to hydrogen's low density,hydrogen/powder fuel jets exhibit shorter distances and velocities compared to nitrogen/powder fuel jets.Hydrogen fluidization also results in larger divergence angles,particularly in the near field.These findings underscore the importance of nozzle design and fluidization gas composition in optimizing scramjet performance and efficiency. 展开更多
关键词 Multiphase flows Gas-particle two-phase jet Nozzle contraction angle Powder fuel scramjet
原文传递
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
5
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity two-phase flow Pressure transient analysis
下载PDF
Integrated numerical simulation of hydraulic fracturing and production in shale gas well considering gas-water two-phase flow
6
作者 TANG Huiying LUO Shangui +4 位作者 LIANG Haipeng ZENG Bo ZHANG Liehui ZHAO Yulong SONG Yi 《Petroleum Exploration and Development》 SCIE 2024年第3期684-696,共13页
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale... Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model. 展开更多
关键词 shale gas well hydraulic fracturing fracture propagation gas-water two-phase flow fracturing-production integrated numerical simulation
下载PDF
Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells
7
作者 Yongwei Duan Zhaopeng Zhu +2 位作者 Hui He Gaoliang Xuan Xuemeng Yu 《Fluid Dynamics & Materials Processing》 EI 2024年第2期349-364,共16页
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework... The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells. 展开更多
关键词 Shale gas fracturingfluid backflow the stimulated reservoir volume gas-water two-phase production
下载PDF
Arbitrary High-Order Fully-Decoupled Numerical Schemes for Phase-Field Models of Two-Phase Incompressible Flows
8
作者 Ruihan Guo Yinhua Xia 《Communications on Applied Mathematics and Computation》 EI 2024年第1期625-657,共33页
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the... Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows. 展开更多
关键词 two-phase incompressible flows Fully-decoupled High-order accurate Linear implicit Spectral deferred correction method Local discontinuous Galerkin method
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
9
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
10
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
下载PDF
A Note on an Order Level Inventory Model with Varying Two-Phased Demand and Time-Proportional Deterioration
11
作者 Sephali Mohanty Trailokyanath Singh +1 位作者 Sudhansu Sekhar Routary Chinmayee Naik 《American Journal of Operations Research》 2024年第1期59-73,共15页
The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. Th... The main purpose of this paper is to generalize the effect of two-phased demand and variable deterioration within the EOQ (Economic Order Quantity) framework. The rate of deterioration is a linear function of time. The two-phased demand function states the constant function for a certain period and the quadratic function of time for the rest part of the cycle time. No shortages as well as partial backlogging are allowed to occur. The mathematical expressions are derived for determining the optimal cycle time, order quantity and total cost function. An easy-to-use working procedure is provided to calculate the above quantities. A couple of numerical examples are cited to explain the theoretical results and sensitivity analysis of some selected examples is carried out. 展开更多
关键词 Deteriorating Items EOQ (Economic Order Quantity) INVENTORY Time-Proportional Deterioration two-phased Demand
下载PDF
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
12
作者 Raphael de O. Garcia Graciele P. Silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 Computational Fluid Dynamics Buckley-Leverett Equation Numerical Methods two-phase Fluid Flow
下载PDF
Surface quality, microstructure and mechanical properties of Cu-Sn alloy plate prepared by two-phase zone continuous casting 被引量:1
13
作者 刘雪峰 罗继辉 王晓晨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1901-1910,共10页
Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate... Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved. 展开更多
关键词 Cu-Sn alloy plate two-phase zone continuous casting surface quality grains-covered grains microstructure mechanical property
下载PDF
OXIDATION OF A TWO-PHASE Cu-75Cr ALLOY IN AIRAT 700-900℃ 被引量:21
14
作者 F. Gesmundo Y Niu F. Vianiand D.L. Douglass(Universita di Genova, Fiera del Mare, Pad. D,16129 Genova, Italy)(State Key Lab. for Corrosion and Protection, Institute of Corrosion and Protection of Metals, theChinese Academy of Sciences, Shenyang 110015, Ch 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1997年第4期333-341,共9页
The cormsion in air of a two-phase Cu-75Cr alloy was studied at 700-900℃. Thealloy cormded nearly parabolically at 700-800℃, but at 900℃ its instantaneousparabolic mte constant decreased with time. The scales were ... The cormsion in air of a two-phase Cu-75Cr alloy was studied at 700-900℃. Thealloy cormded nearly parabolically at 700-800℃, but at 900℃ its instantaneousparabolic mte constant decreased with time. The scales were complex and consistedof an outermost layer of copper oxide generally followed bg a layer of the double ox-ide Cu2 Cr2 O4 sometimes containing particles of unoxidized chromium surmunded bya chromia layer. An innermost layer of chromia was also observed in some cases.Finally metallic copper was al8o frequently mixed with chromia particles. No Cr de-pletion was observed in the alloy close to the inteffoce with the scale. In any case,this alloy was not able to form an exclusive continuous protective chromia layer. Thespecial cormsion behavior Of this alloy is typical of two-phase binary systems with alange solubility gaP in which the outwaof dthesion fiux of the most-reactive componentin the alloy is strongly reduced and may be inswncient to fOrm a protective externallayer of the cormsponding oxide. In paTticular, the presence of particles of Cr withina double oxide layer is very unusual and is allowed only for the kinetic reason. 展开更多
关键词 copper-chromium alloy two-phase OXIDATION
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:1
15
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 Flow assurance Flow pattern Heat transfer Flowlines two-phase flow Global sensitivity analysis
下载PDF
A two-phase type-curve method with multiscale fluid transport mechanisms in hydraulically fractured shale reservoirs 被引量:1
16
作者 Feng-Yuan Zhang Lin-Jun Zou +3 位作者 Zhen-Hua Rui Hamid Emami-Meybodi Luis F.Ayala Zheng-Xin Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2253-2267,共15页
The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowba... The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowback and long-term production data.However,two-phase flow of water and hydrocarbon after an HF stimulation together with the complex transport mechanisms in shale nanopores exacerbate the nonlinearity of the transport equation,causing errors in type-curve analysis.Accordingly,we propose a new two-phase type-curve method to estimate HF properties,such as HF volume and permeability of fracture,through the analysis of flowback data of multi-fractured shale wells.The proposed type curve is based on a semianalytical solution that couples the two-phase flow from the matrix with the flow in HF by incorporating matrix influx,slippage effect,stress dependence,and the spatial variation of fluid properties in inorganic and organic pores.For the first time,multiple fluid transport mechanisms are considered into two-phase type-curve analysis for shale reservoirs.We analyze the flowback data from a multi-fractured horizontal well in a shale gas reservoir to verify the field application of the proposed method.The results show that the fracture properties calculated by the type-curve method are in good agreement with the long-time production data. 展开更多
关键词 Type curve two-phase flow Flowback analysis Fluid transport mechanisms Shale reservoir
下载PDF
Numerical Simulation of a Two-Phase Flow with Low Permeability anda Start-Up Pressure Gradient 被引量:1
17
作者 Xuanyu Dong Jingyao Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期175-185,共11页
A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related n... A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases. 展开更多
关键词 Low-permeability reservoirs two-phase flow water cut start-up pressure gradient non-darcy flow
下载PDF
Pore-Scale Investigation of Coupled Two-Phase and Reactive Transport in the Cathode Electrode of Proton Exchange Membrane Fuel Cells 被引量:1
18
作者 Shengjie Ye Yuze Hou +2 位作者 Xing Li Kui Jiao Qing Du 《Transactions of Tianjin University》 EI CAS 2023年第1期1-13,共13页
A three-dimensional multicomponent multiphase lattice Boltzmann model(LBM)is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells.... A three-dimensional multicomponent multiphase lattice Boltzmann model(LBM)is established to model the coupled two-phase and reactive transport phenomena in the cathode electrode of proton exchange membrane fuel cells.The gas diff usion layer(GDL)and microporous layer(MPL)are stochastically reconstructed with the inside dynamic distribution of oxygen and liquid water resolved,and the catalyst layer is simplifi ed as a superthin layer to address the electrochemical reaction,which provides a clear description of the fl ooding eff ect on mass transport and performance.Diff erent kinds of electrodes are reconstructed to determine the optimum porosity and structure design of the GDL and MPL by comparing the transport resistance and per-formance under the fl ooding condition.The simulation results show that gradient porosity GDL helps to increase the reactive area and average concentration under fl ooding.The presence of the MPL ensures the oxygen transport space and reaction area because liquid water cannot transport through micropores.Moreover,the MPL helps in the uniform distribution of oxygen for an effi cient in-plane transport capacity.Crack and perforation structures can accelerate the water transport in the assembly.The systematic perforation design yields the best performance under fl ooding by separating the transport of liquid water and oxygen. 展开更多
关键词 Proton exchange membrane fuel cell Lattice Boltzmann model ELECTRODE Water management two-phase fl ow Reactive transport
下载PDF
Mechanism and Kinetics of Phase Transformation in Two-phase TiAl-based Alloys 被引量:2
19
作者 Shiming HAO+ and Wen tao WU(Dept. of Mater. Sci., Northeastern University, Shenyang, 110006, China)Chuanxi HAN(Northwest Institute for Nonferrous Metal Research, Bao ji, 721014, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第3期170-174,共5页
The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersa... The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed 展开更多
关键词 TIAL Mechanism and Kinetics of Phase Transformation in two-phase TiAl-based alloys
下载PDF
Oxidation of two-phase Cu-Cr alloys with different microstructures 被引量:13
20
作者 付广艳 牛焱 +1 位作者 吴维 管恒荣 《中国有色金属学会会刊:英文版》 CSCD 2001年第3期333-336,共4页
The oxidation of PM Cu 50Cr, MA Cu 40Cr and MS Cu 40Cr alloys at 800 ℃ in 0.1 MPa O 2 was studied. The most important difference of their oxidation behaviors is the formation of an exclusive chromia scale on the surf... The oxidation of PM Cu 50Cr, MA Cu 40Cr and MS Cu 40Cr alloys at 800 ℃ in 0.1 MPa O 2 was studied. The most important difference of their oxidation behaviors is the formation of an exclusive chromia scale on the surface of the MS Cu 40Cr alloy and a continuous chromia layer beneath an outer CuO layer corresponding MA Cu 40Cr alloy, while a complex scale composing of CuO, Cu 2O, Cu 2Cr 2O 4 and Cr 2O 3 formed on the PM Cu 50Cr alloy. This result implies that alloy microstructure affects their oxidation behaviors largely. Microcrystalline structure provides numerous diffusion paths for reactive component chromium, shorter diffusion distance and rapid dissolution of Cr riched second phase. All these favor the exclusive formation of the most stable oxide. [ 展开更多
关键词 OXIDATION Cu Cr alloys powder metallurgy mechanical alloying SPUTTERING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部