Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameter...Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameters are directly related to success or failure of the system operation and treatment effect.展开更多
A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and...A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.展开更多
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic ...To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.展开更多
This study allowed us to highlight the level of pollution of a BAYA River water near several poultry farms and the sizing of an anaerobic digester that will be able to treat chicken manure from a poultry farm (BRIN FO...This study allowed us to highlight the level of pollution of a BAYA River water near several poultry farms and the sizing of an anaerobic digester that will be able to treat chicken manure from a poultry farm (BRIN FOUNDATION). To evaluate this pollution, the parameters such as ammonium (NH<sub>4</sub><sup>+</sup>), Phosphate (PO<sub>4</sub><sup>3-</sup>), Biochemical Oxygen Demand (DBO<sub>5</sub>) and Nitrate (NO<sub>3</sub><sup>-</sup>) were determined. For sampling point P1, the concentrations in mg/L of these parameters are (25.00 ± 4.25), (0.40 ± 0.20), (98.00 ± 6.35) and (96.00 ± 5.35), respectively. On the other hand, for sampling point P2, the concentrations in mg/L of these parameters are respectively (33.00 ± 9.05), (0.70 ± 0.12), (123 ± 7.13) and (93 ± 7.10). These values indicate a strong organic pollution of the BAYA River. The determination of the different concentrations of the organic pollution parameters allowed us to evaluate the degradation and the quality of the water of the BAYA River water, by the poultry activity. However, considering the physicochemical properties of the waste (chicken manure), which is the main source of organic pollution, we have considered an energy recovery through the production of biogas. This requires the design, sizing, and implementation of an anaerobic digester in a poultry farm. Therefore, the project would require the construction of an adapted masonry type anaerobic digester with a capacity of 10 m<sup>3</sup>.展开更多
This Anaerobic Digestion of Sisal decortication residue (SDR) from sisal decorication unit at Hale biogas plant in Tanga (Tanzania) is presented. The study was done to address the challenges facing Katani limited at H...This Anaerobic Digestion of Sisal decortication residue (SDR) from sisal decorication unit at Hale biogas plant in Tanga (Tanzania) is presented. The study was done to address the challenges facing Katani limited at Hale biogas plant. This plant was built as pilot before building other biogas plants. These challenges were like high retention time of substrate which was SDR, low biogas productivity, high investment costs due to large tanks sizes and low plant availability. From the study, it was discovered that, when particle size was reduced biogas production increased, degradation of SDR also increased and no significant change in biogas composition. Increase in biogas yield of 30% and 129% were recorded for reduced SDR compared to raw size SDR digested at atmospheric condition and 40°C respectivelly. SDR degradation measured in TS and VS removal efficiency, showed increase in degradation of about 5% for the reduced particle size compared to raw size particle. The study concluded that SDR was good raw material for biogas production when 90% of the particles reduced to less than 2 mm. To maximize production, digestion must be conducted at high temperature around 40°C with constant monitoring and control of all para-meters. This will increase plant availability by increasing efficiency and life span of the pumps and stirrers.展开更多
The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test ...The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant.展开更多
The present paper assessed a feasibility study to build a small-size anaerobic digester, where a forage legume, (Alfalfa, IVledicago sativa L.), together with other crops, such as sorghum, could be used. Alfalfa is ...The present paper assessed a feasibility study to build a small-size anaerobic digester, where a forage legume, (Alfalfa, IVledicago sativa L.), together with other crops, such as sorghum, could be used. Alfalfa is a highly sustainable crop, since it can fix nitrogen, with the benefit of avoiding underground water pollution by nitrates, its residual products are rich with nitrogen, thus improving soil structure and fertility more than popular graminaceous crops such as corn, and it needs little irrigation. All these characteristics make it one of the vegetable species with the lowest energy and water needs for growing. The aims of this feasibility study are: (1) optimization of feedstock in the bio-digester; (2) typology of bio-digester; (3) size of bio-digester in relation with land availability for growing the energy crops; (4) the utilization of bio-gas produced by bio-digester as fuel in combined heat and power systems; (5) disposal of waste-water according to regional and national laws. The final aim of this study is to verify the possibility to develop an alternative economical use of marginal soils in relatively dry areas of central Italy that could be applied in other areas with similar climatic conditions.展开更多
[Objective] The aim was to study on effect of sludge from different sources on biogas yield efficiency through anaerobic digestion of corn straw. [Method] The present research studied on daily biogas yield and the acc...[Objective] The aim was to study on effect of sludge from different sources on biogas yield efficiency through anaerobic digestion of corn straw. [Method] The present research studied on daily biogas yield and the accumulated biogas amount through anaerobic digestion of corn straw and sludges from four sources. [Result] The accumulated biogas yields produced from sludges in four sources from high to low were granular sludge, river sediments, concentrated sludge and filtered sludge. The first one proved the highest at 3.73 and 56.29 L/kg VS in daily biogas yield and the accumulated biogas. [Conclusion] The research laid foundation for full utilization of straw, improvement of energy utilization and sustainable development.展开更多
Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic a...Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic activities, i.e., β-glucosidase, N-α-benzoyl-Largininamide (BAA)-hydrolysing protease, urease and phosphatase activities were analysed. The BAA-hydrolysing protease activity during the first 2-3 weeks was low with low pH, but was enhanced later with the pH increase. β-Glucosidase activity showed the lowest values in weeks 1-2, and recovered with the increase of BAA-hydrolysing protease activity. Acetic acid dominated most of the total VFAs in thermophilic digestion, while propionate and butyrate dominated in mesophilic digestion. Thermophilic digestion was confirmed more feasible for achieving better performance against misbalance, especially during the start-up period in a dry anaerobic digestion process.展开更多
Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. ...Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. Characteristics of proteins (PN), polysaccharides (PS), excitation-emission matrix (EEM) fluorescence spectroscopy and molecular weight (MW) distribution of dissolved organic matters (DOM) in different EPS fractions were evaluated. The results showed that after ultrasonic pretreatment, the normalized capillary suction time (CST) decreased from 44.4 to 11.1 (sec·L)/g total suspended solids (TSS) during anaerobic digestion, indicating that sludge dewaterability was greatly improved. The normalized CST was significantly correlated with PN concentration (R2 = 0.92, p 〈 0.01) and the PN/PS ratio (R2 = 0.84, p 〈 0.01) in the loosely bound EPS (LB-EPS) fraction. Meanwhile, the average MW of DOM in the LB- EPS and tightly bound EPS (TB-EPS) fractions also had a good correlation with the normalized CST (R2 〉 0.66, p 〈 0.01). According to EEM fluorescence spectroscopy, tryptophan-like substances intensities in the slime, LB-EPS and TB-EPS fractions were correlated with the normalized CST. The organic matters in the EPS matrix played an important role in influencing sludge dewaterability.展开更多
The influence of temperature on the performance of anaerobic reactors for treating the organic fraction of municipal sohd waste (OFMSW) was studied. Batch digestion of OFMSW was carded out for 32 d at different temp...The influence of temperature on the performance of anaerobic reactors for treating the organic fraction of municipal sohd waste (OFMSW) was studied. Batch digestion of OFMSW was carded out for 32 d at different temperature (25℃, 35℃, 45℃ and 55℃) conditions for total solid concentrations (TS) 17% with the ratio of total organic carbon to nitrogen (C/N) being, 25:1 respectively, while keeping other parameters constant such as inoculum, start-up pH, reactor volume (2 L) and so on. Temperature can influence the methanogenic bacteria activity, accordingly inhibiting the OFMSW biodegradation and stabilization efficiency. Anaerobic reactors excelled at TS reduction, total volatile solid reduction, chemical oxygen demand reduction, increasing cumulative biogas production, whose rate was at temperature (35℃ and 55℃) conditions. Methane concentration in the biogas was above 65% in four reactors. In addition, the fluctuation of temperatures resulted in the biogas production variation. The data obtained indicated that temperature had a significant influence on anaerobic process.展开更多
The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37&#176;C) of cow manure were investigated. Before...The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37&#176;C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.展开更多
Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations o...Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.展开更多
Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different m...Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid(VS) concentration of more than 3 g VS · L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand(COD) and volatile fatty acids(VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 m L· g V· S-1 · d-1 at a mass ratio(FW/RS) of 3 : 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than monodigestions in higher organic loading system.展开更多
In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness o...In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.展开更多
This study investigated the effects of soluble chemical oxygen demand(s COD),volatile fatty acids(VFAs),and microbial community on biogas production in the process of rice straw(RS)anaerobic digestion(AD).The results ...This study investigated the effects of soluble chemical oxygen demand(s COD),volatile fatty acids(VFAs),and microbial community on biogas production in the process of rice straw(RS)anaerobic digestion(AD).The results showed that the s COD concentrations and VFA production appeared the same trend,which was inversely related with that of daily biogas production.The cumulative methane yield of RS was 194.9 ml·(g VS)^-1·^-1.The modified Gompertz model is the best fit for measured methane yields of RS in the three kinetic models of first-order kinetic,Cone and modified Gompertz.Firmicutes,Bacteroidetes,and Euryarchaeota were the dominant microbial phyla throughout AD process.At the genus level,the microorganisms mainly composed of Clostridium,Vadin,Terrisporobacter,Methanosaeta,Methanobacterium,and Methanosarcina.Proteiniphilum showed strong relationship with s COD and VFA production.Clostridium and Terrisporobacter displayed relationship with biogas production.Therefore,in order to improve the stability of the AD system,the parameter changes of VFAs,s COD,and biogas yield were monitored in the RS AD process.The study can provide theoretical basis for improving the efficiency of RS AD.展开更多
Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. ...Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. This review summarizes and evaluates the present knowledge of effects of different states of Fe( ZVI,Fe( II),Fe( III)) on hydrogen and methane production in anaerobic digestion process. The potential promotion effects of iron oxides nanoparticles( IONPs),especially magnetite nanoparticles on anaerobic digestion are also mentioned. Fe plays important role in transporting electron,stimulating bacterial growth and increasing hydrogen and methane production rate by promoting enzyme activity. Adding Fe with different morphologies and valence states in anaerobic digestion to increase biogas( hydrogen and methane) production and enhance organic matter degradation simultaneously,which has attracted many scientists' attention in recent years. Rapid progress in this area has been made over the last few years,since Fe is essential to the fermentative hydrogen and methane production,while few is known about how Fe affects the fermentative biogas production. This review is significant to maintain the stable operation of the biogas project.展开更多
Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia(2%, 4%, and 6%, dry matter) and three moisture contents(...Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia(2%, 4%, and 6%, dry matter) and three moisture contents(30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates(50, 65, and 80 g·L-1) to produce biogas. The results indicated that the wheat straw pretreated with 80% moisture content and 4% ammonia achieved the highest methane yield of 199.7 ml·g-1(based on per unit volatile solids loaded), with shorter digestion time(T80) of 25 days at the loading rate of 65 g·L-1compared to untreated one. The main chemical compositions of wheat straw were also analyzed. The cellulose and hemicellulose contents were decomposed by 2%-20% and 26%-42%, respectively,while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.展开更多
Rice straw physicochemical characteristics and anaerobic digestion(AD)performance via ammonia pretreatment at varying ammonia concentrations(2%,4%,and 6%)and moisture contents(30%,50%,70%,and 90%)under a mild conditio...Rice straw physicochemical characteristics and anaerobic digestion(AD)performance via ammonia pretreatment at varying ammonia concentrations(2%,4%,and 6%)and moisture contents(30%,50%,70%,and 90%)under a mild condition were investigated.The results showed that the ammonia pretreatment effectively damaged the rice straw structure,increased the soluble organic concentration,and improved rice straw hydrolysis and AD performance.After pretreatment,the ester bond and ether bond were ruptured in lignocellulose and the volatile fatty acids(VFAs)were within the range of 1457.81–1823.67 mg·L-1.In addition,ammonia pretreatment had high selectivity on lignin removal,resulting in a maximum lignin removal rate of 50.80%.The highest methane yield of rice straw was 250.34 ml·(g VS)-1 at a 4%ammonia concentration coupled with a 70%moisture content,which was 28.55%higher than that of the control.The result showed that ammonia pretreatment of rice straw is technically suitable to enhance AD performance for further application.展开更多
Biochar,one of the products of thermochemical conversion of biomass,possesses specific physiochemical properties such as conductivity,pore adsorption,surface functional groups,and cation exchange capacity.Anaerobic di...Biochar,one of the products of thermochemical conversion of biomass,possesses specific physiochemical properties such as conductivity,pore adsorption,surface functional groups,and cation exchange capacity.Anaerobic digestion(AD)as a classical bio-wastes conversion technology,suffers from inhibitions,process instability,and methanogenic inefficiency which limit its efficiency.With the advantages of pH buffering,functional microbes enrichment,inhibitors alleviating,and direct interspecies electron transfer(DIET)accelerating,biochar suggests a promising application as additives for AD.Herein,this paper reviewed the noting physicochemical properties of biochar,and discussed its roles and related mechanisms in AD.Further,this paper highlighted the advantages and drawbacks,and pointed out the corresponding challenges and prospects for future research and application of biochar amending AD.展开更多
基金Supported by Yunnan S&T Innovation Platform Construction Project(2013DH041)National Natural Science Foundation of China(51366015)Specialized Research Fund for the Doctoral Program of Higher Education of China(20135303110001)~~
文摘Two-phase anaerobic digestion process is influenced by acid control for hydrogen production, reaction temperature, substrate detention time, sludge activity, and granular formation. Al of these technological parameters are directly related to success or failure of the system operation and treatment effect.
基金Project supported by the National Natural Science Foundation of China(No. 50278036)the Natural Science Foundation of Guangdong Province (No. 04105951)
文摘A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found.
文摘To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSS-d) when the COD loading were designated as 18.8 g/(L-d) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.
文摘This study allowed us to highlight the level of pollution of a BAYA River water near several poultry farms and the sizing of an anaerobic digester that will be able to treat chicken manure from a poultry farm (BRIN FOUNDATION). To evaluate this pollution, the parameters such as ammonium (NH<sub>4</sub><sup>+</sup>), Phosphate (PO<sub>4</sub><sup>3-</sup>), Biochemical Oxygen Demand (DBO<sub>5</sub>) and Nitrate (NO<sub>3</sub><sup>-</sup>) were determined. For sampling point P1, the concentrations in mg/L of these parameters are (25.00 ± 4.25), (0.40 ± 0.20), (98.00 ± 6.35) and (96.00 ± 5.35), respectively. On the other hand, for sampling point P2, the concentrations in mg/L of these parameters are respectively (33.00 ± 9.05), (0.70 ± 0.12), (123 ± 7.13) and (93 ± 7.10). These values indicate a strong organic pollution of the BAYA River. The determination of the different concentrations of the organic pollution parameters allowed us to evaluate the degradation and the quality of the water of the BAYA River water, by the poultry activity. However, considering the physicochemical properties of the waste (chicken manure), which is the main source of organic pollution, we have considered an energy recovery through the production of biogas. This requires the design, sizing, and implementation of an anaerobic digester in a poultry farm. Therefore, the project would require the construction of an adapted masonry type anaerobic digester with a capacity of 10 m<sup>3</sup>.
文摘This Anaerobic Digestion of Sisal decortication residue (SDR) from sisal decorication unit at Hale biogas plant in Tanga (Tanzania) is presented. The study was done to address the challenges facing Katani limited at Hale biogas plant. This plant was built as pilot before building other biogas plants. These challenges were like high retention time of substrate which was SDR, low biogas productivity, high investment costs due to large tanks sizes and low plant availability. From the study, it was discovered that, when particle size was reduced biogas production increased, degradation of SDR also increased and no significant change in biogas composition. Increase in biogas yield of 30% and 129% were recorded for reduced SDR compared to raw size SDR digested at atmospheric condition and 40°C respectivelly. SDR degradation measured in TS and VS removal efficiency, showed increase in degradation of about 5% for the reduced particle size compared to raw size particle. The study concluded that SDR was good raw material for biogas production when 90% of the particles reduced to less than 2 mm. To maximize production, digestion must be conducted at high temperature around 40°C with constant monitoring and control of all para-meters. This will increase plant availability by increasing efficiency and life span of the pumps and stirrers.
基金Sponsored by the National Hi-Tech Research and Development Program of China (Grant No.2003AA601090)Projects of Development Plan of the State Key Fundamental Research of China (Grant No.2004CB4185)
文摘The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant.
文摘The present paper assessed a feasibility study to build a small-size anaerobic digester, where a forage legume, (Alfalfa, IVledicago sativa L.), together with other crops, such as sorghum, could be used. Alfalfa is a highly sustainable crop, since it can fix nitrogen, with the benefit of avoiding underground water pollution by nitrates, its residual products are rich with nitrogen, thus improving soil structure and fertility more than popular graminaceous crops such as corn, and it needs little irrigation. All these characteristics make it one of the vegetable species with the lowest energy and water needs for growing. The aims of this feasibility study are: (1) optimization of feedstock in the bio-digester; (2) typology of bio-digester; (3) size of bio-digester in relation with land availability for growing the energy crops; (4) the utilization of bio-gas produced by bio-digester as fuel in combined heat and power systems; (5) disposal of waste-water according to regional and national laws. The final aim of this study is to verify the possibility to develop an alternative economical use of marginal soils in relatively dry areas of central Italy that could be applied in other areas with similar climatic conditions.
基金National Basic Research Program of China (973 Program) (2009CB724700,2011CBA00800)National Natural Foundation of China (31101269)+4 种基金Scienc & Technology Plotform Construction Programof Jiangxi Province (2010DTZ01900)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsNatural Science Foundation of Jiangsu Department of Education (07KJD350034)High-level Talents Foundation of Jiangsu University (07JDG020)Supported by International Foundation for Science (F 4930-1)~~
文摘[Objective] The aim was to study on effect of sludge from different sources on biogas yield efficiency through anaerobic digestion of corn straw. [Method] The present research studied on daily biogas yield and the accumulated biogas amount through anaerobic digestion of corn straw and sludges from four sources. [Result] The accumulated biogas yields produced from sludges in four sources from high to low were granular sludge, river sediments, concentrated sludge and filtered sludge. The first one proved the highest at 3.73 and 56.29 L/kg VS in daily biogas yield and the accumulated biogas. [Conclusion] The research laid foundation for full utilization of straw, improvement of energy utilization and sustainable development.
基金Project supported by the Grant-in-Aid for Science Research of Japan Society for the Promotion of Science (JSPS), Japan.
文摘Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic activities, i.e., β-glucosidase, N-α-benzoyl-Largininamide (BAA)-hydrolysing protease, urease and phosphatase activities were analysed. The BAA-hydrolysing protease activity during the first 2-3 weeks was low with low pH, but was enhanced later with the pH increase. β-Glucosidase activity showed the lowest values in weeks 1-2, and recovered with the increase of BAA-hydrolysing protease activity. Acetic acid dominated most of the total VFAs in thermophilic digestion, while propionate and butyrate dominated in mesophilic digestion. Thermophilic digestion was confirmed more feasible for achieving better performance against misbalance, especially during the start-up period in a dry anaerobic digestion process.
基金supported by the National Natural Science Foundation of China (No. 20977066)the National Key Project for Water Pollution Control (No.2008ZX07316-002, 2008ZX07317-003)the Specialized Research Found for Doctoral Program of Higher Education of China (No. 200802470029)
文摘Effect of ultrasonic pretreatment on sludge dewaterability was determined and the fate of extracellular polymeric substances (EPS) matrix in mesophilic anaerobic digestion after ultrasonic pretreatment was studied. Characteristics of proteins (PN), polysaccharides (PS), excitation-emission matrix (EEM) fluorescence spectroscopy and molecular weight (MW) distribution of dissolved organic matters (DOM) in different EPS fractions were evaluated. The results showed that after ultrasonic pretreatment, the normalized capillary suction time (CST) decreased from 44.4 to 11.1 (sec·L)/g total suspended solids (TSS) during anaerobic digestion, indicating that sludge dewaterability was greatly improved. The normalized CST was significantly correlated with PN concentration (R2 = 0.92, p 〈 0.01) and the PN/PS ratio (R2 = 0.84, p 〈 0.01) in the loosely bound EPS (LB-EPS) fraction. Meanwhile, the average MW of DOM in the LB- EPS and tightly bound EPS (TB-EPS) fractions also had a good correlation with the normalized CST (R2 〉 0.66, p 〈 0.01). According to EEM fluorescence spectroscopy, tryptophan-like substances intensities in the slime, LB-EPS and TB-EPS fractions were correlated with the normalized CST. The organic matters in the EPS matrix played an important role in influencing sludge dewaterability.
文摘The influence of temperature on the performance of anaerobic reactors for treating the organic fraction of municipal sohd waste (OFMSW) was studied. Batch digestion of OFMSW was carded out for 32 d at different temperature (25℃, 35℃, 45℃ and 55℃) conditions for total solid concentrations (TS) 17% with the ratio of total organic carbon to nitrogen (C/N) being, 25:1 respectively, while keeping other parameters constant such as inoculum, start-up pH, reactor volume (2 L) and so on. Temperature can influence the methanogenic bacteria activity, accordingly inhibiting the OFMSW biodegradation and stabilization efficiency. Anaerobic reactors excelled at TS reduction, total volatile solid reduction, chemical oxygen demand reduction, increasing cumulative biogas production, whose rate was at temperature (35℃ and 55℃) conditions. Methane concentration in the biogas was above 65% in four reactors. In addition, the fluctuation of temperatures resulted in the biogas production variation. The data obtained indicated that temperature had a significant influence on anaerobic process.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment,China (2012ZX07202-004-02)
文摘The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37&#176;C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.
基金Supported by Specialized Research Fund for the Doctoral Program of Higer Education(20120010110004)the Natural Science Foundation of Beijing(8142030)
文摘Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1% (KI), 3% ([(2), 6% (K3) and 9% (l(4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1.86% of total solids (TS), 89% of volatile solids (VS) and 22% of lignocellulose, cellulose and hemi- cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6% KOH. Enhanced bio- gas production and cumulative biomethane yield of 258 ml. (g VS)-1 were obtained increased by 45% and 41% respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (l 38%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.
基金Supported by the Natural Science Foundation of Heilongjiang Province(QC2014C031)Returned Overseas Foundation of Heilongjiang Province(LC2013C07)+2 种基金Outstanding Academic Leaders Foundation of Harbin City(2013RFXYJ015)Young Reserve Talent Foundation of Harbin City(2014RFQYJ141)Outstanding Young Foundation of Heilongjiang Academy of Agricultural Sciences(2013JCQN003)
文摘Anaerobic co-digestion of food waste(FW) and rice straw(RS) in continuously stirred tank reactor(CSTR) at high organic loading rate(OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid(VS) concentration of more than 3 g VS · L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand(COD) and volatile fatty acids(VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 m L· g V· S-1 · d-1 at a mass ratio(FW/RS) of 3 : 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than monodigestions in higher organic loading system.
基金Supported by the Key Technologies R&D Program of China(2016YFD0501402)
文摘In order to enhance the biomethane production from corn stover, choosing effective pretreatment is one of the necessary steps before starting anaerobic digestion(AD).This study was aimed to analyze the effectiveness of freezing–thawing with ammonia pretreatment on substance degradation and AD performance of corn stover.Three ammonia concentrations(2%, 4%, and 6%) with two different moisture contents(50% and 70%) were used to pretreat the corn stover at two temperatures(-20 ℃ and 20 ℃).The result showed that an optimum pretreatment condition for corn stover was at the temperature of -20 ℃, moisture content of 70% and ammonia concentration of 2%.Under the optimum pretreatment condition, the maximum biomethane yield reached 261 ml·(g VS)^(-1), which was 41.08% higher than that of the untreated.Under different pretreatment conditions,the highest loss of lignin at -20 ℃ with 2% ammonia concentration was 63.36% compared with the untreated.The buffer capacity of AD system was also improved after the freezing–thawing with ammonia pretreatment.Therefore, the freezing–thawing with ammonia pretreatment can be used to improve AD performance for corn stover.This study provides further insight for exploring an efficient freezing–thawing with ammonia pretreatment strategy to enhance AD performance for the practical application.
基金the fund supports from the National Natural Science Foundation of China(21808010).
文摘This study investigated the effects of soluble chemical oxygen demand(s COD),volatile fatty acids(VFAs),and microbial community on biogas production in the process of rice straw(RS)anaerobic digestion(AD).The results showed that the s COD concentrations and VFA production appeared the same trend,which was inversely related with that of daily biogas production.The cumulative methane yield of RS was 194.9 ml·(g VS)^-1·^-1.The modified Gompertz model is the best fit for measured methane yields of RS in the three kinetic models of first-order kinetic,Cone and modified Gompertz.Firmicutes,Bacteroidetes,and Euryarchaeota were the dominant microbial phyla throughout AD process.At the genus level,the microorganisms mainly composed of Clostridium,Vadin,Terrisporobacter,Methanosaeta,Methanobacterium,and Methanosarcina.Proteiniphilum showed strong relationship with s COD and VFA production.Clostridium and Terrisporobacter displayed relationship with biogas production.Therefore,in order to improve the stability of the AD system,the parameter changes of VFAs,s COD,and biogas yield were monitored in the RS AD process.The study can provide theoretical basis for improving the efficiency of RS AD.
基金Sponsored by the National Natural Science Foundation for Youth of China(Grant No.51308149)Major Science and Technology Program for Water Pollution Control Treatment(Grant No.2014ZX07201-012+1 种基金2013ZX07201007-001)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(Grant No.2014TS08)
文摘Anaerobic digestion is widely used in the treatment of industrial wastewater,excess activated sludge,municipal waste,crop straw and livestock manure,with the functions of environmental protection and energy recovery. This review summarizes and evaluates the present knowledge of effects of different states of Fe( ZVI,Fe( II),Fe( III)) on hydrogen and methane production in anaerobic digestion process. The potential promotion effects of iron oxides nanoparticles( IONPs),especially magnetite nanoparticles on anaerobic digestion are also mentioned. Fe plays important role in transporting electron,stimulating bacterial growth and increasing hydrogen and methane production rate by promoting enzyme activity. Adding Fe with different morphologies and valence states in anaerobic digestion to increase biogas( hydrogen and methane) production and enhance organic matter degradation simultaneously,which has attracted many scientists' attention in recent years. Rapid progress in this area has been made over the last few years,since Fe is essential to the fermentative hydrogen and methane production,while few is known about how Fe affects the fermentative biogas production. This review is significant to maintain the stable operation of the biogas project.
基金Supported by the National High Technology Research and Development Program of China(2008AA062401)the China-US International Cooperation Project(2011DFA90800)the Ministry of Science and Technology,China
文摘Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia(2%, 4%, and 6%, dry matter) and three moisture contents(30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates(50, 65, and 80 g·L-1) to produce biogas. The results indicated that the wheat straw pretreated with 80% moisture content and 4% ammonia achieved the highest methane yield of 199.7 ml·g-1(based on per unit volatile solids loaded), with shorter digestion time(T80) of 25 days at the loading rate of 65 g·L-1compared to untreated one. The main chemical compositions of wheat straw were also analyzed. The cellulose and hemicellulose contents were decomposed by 2%-20% and 26%-42%, respectively,while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.
基金the funding support from the Tianjin City Science and Technology Planning Project of the People’s Republic of China(grant number 18ZXSZSF00120).
文摘Rice straw physicochemical characteristics and anaerobic digestion(AD)performance via ammonia pretreatment at varying ammonia concentrations(2%,4%,and 6%)and moisture contents(30%,50%,70%,and 90%)under a mild condition were investigated.The results showed that the ammonia pretreatment effectively damaged the rice straw structure,increased the soluble organic concentration,and improved rice straw hydrolysis and AD performance.After pretreatment,the ester bond and ether bond were ruptured in lignocellulose and the volatile fatty acids(VFAs)were within the range of 1457.81–1823.67 mg·L-1.In addition,ammonia pretreatment had high selectivity on lignin removal,resulting in a maximum lignin removal rate of 50.80%.The highest methane yield of rice straw was 250.34 ml·(g VS)-1 at a 4%ammonia concentration coupled with a 70%moisture content,which was 28.55%higher than that of the control.The result showed that ammonia pretreatment of rice straw is technically suitable to enhance AD performance for further application.
基金supported by the National Natural Science Foundation of China(NSFC 51806243)and the China Scholarship Council Grant(#201908040007).
文摘Biochar,one of the products of thermochemical conversion of biomass,possesses specific physiochemical properties such as conductivity,pore adsorption,surface functional groups,and cation exchange capacity.Anaerobic digestion(AD)as a classical bio-wastes conversion technology,suffers from inhibitions,process instability,and methanogenic inefficiency which limit its efficiency.With the advantages of pH buffering,functional microbes enrichment,inhibitors alleviating,and direct interspecies electron transfer(DIET)accelerating,biochar suggests a promising application as additives for AD.Herein,this paper reviewed the noting physicochemical properties of biochar,and discussed its roles and related mechanisms in AD.Further,this paper highlighted the advantages and drawbacks,and pointed out the corresponding challenges and prospects for future research and application of biochar amending AD.