期刊文献+
共找到2,659篇文章
< 1 2 133 >
每页显示 20 50 100
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
1
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser Gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
2
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity two-phase flow Pressure transient analysis
下载PDF
Integrated numerical simulation of hydraulic fracturing and production in shale gas well considering gas-water two-phase flow
3
作者 TANG Huiying LUO Shangui +4 位作者 LIANG Haipeng ZENG Bo ZHANG Liehui ZHAO Yulong SONG Yi 《Petroleum Exploration and Development》 SCIE 2024年第3期684-696,共13页
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale... Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model. 展开更多
关键词 shale gas well hydraulic fracturing fracture propagation gas-water two-phase flow fracturing-production integrated numerical simulation
下载PDF
Arbitrary High-Order Fully-Decoupled Numerical Schemes for Phase-Field Models of Two-Phase Incompressible Flows
4
作者 Ruihan Guo Yinhua Xia 《Communications on Applied Mathematics and Computation》 EI 2024年第1期625-657,共33页
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the... Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows. 展开更多
关键词 two-phase incompressible flows Fully-decoupled High-order accurate Linear implicit Spectral deferred correction method Local discontinuous Galerkin method
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
5
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
6
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
下载PDF
Optimizing Two-Phase Flow Heat Transfer:DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers
7
作者 Ming Yan Caijiang Lu +3 位作者 Pan Shi Meiling Zhang Jiawei Zhang Liang Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期615-631,共17页
In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired ... In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NOx)and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NOx generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges. 展开更多
关键词 two-phase flow coal-fired boiler oxygen content of flue gas carbon content in fly ash hybrid modeling automation control
下载PDF
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
8
作者 Raphael de O. Garcia Graciele P. Silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 Computational Fluid Dynamics Buckley-Leverett Equation Numerical Methods two-phase Fluid flow
下载PDF
Numerical simulation of the gas-solid two-phase flow inside the multi-channel nozzle for the surface nanocrystallization induced by the ultrasonic particulate peening 被引量:1
9
作者 ZHANG Yujun,LIANG Yongli and ZHANG Junbao Advanced Technology Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 《Baosteel Technical Research》 CAS 2010年第4期3-7,共5页
Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP)... Using a gas-solid two-phase model(a discrete phase model),the authors investigated the flow field inside the multi-channel nozzle for surface nanocrystallization(SNC)induced by the ultrasonic particulate peening(USPP).By computation,the velocity fields of both the gas and the solid phases were simulated and the track of the solid phase was analyzed in detail.It can be found that the velocities of the two phases are able to reach an ultrasonic level;meanwhile,the dispersion width of the solid phase at the nozzle exit is less than that of the gas phase.When particle diameters are less than 5 μm,there is a decreasing trend in the dispersion width of the solid phase with an increase in particle diameters.The trend becomes stable as the particle diameters are greater than 5 μm;in the meantime,the distribution of solid particles is near the axis of the jet flow.The optimal standoff distance between the nozzle and the substrate in the process of USPP is about 120 mm.Simulation results can help improve the design of mass-production-oriented multi-channel nozzles for SNC induced by USPP. 展开更多
关键词 USPP SNC multi-channel nozzle gas-solid two-phase flow numerical simulation
下载PDF
Comparison of One-Dimensional Analysis with Experiment for CO<sub>2</sub>Two-Phase Nozzle Flow 被引量:1
10
作者 Wakana Tsuru Satoshi Ueno +1 位作者 Yoichi Kinoue Norimasa Shiomi 《Open Journal of Fluid Dynamics》 2014年第5期415-424,共10页
The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, ... The aim of this study is to investigate CO2 two-phase nozzle flow in terms of both experimental and analytical aspects for the optimum design of two-phase flow nozzle of CO2 two-phase flow ejector. In the experiment, it is measured that the temperature profile in the stream-wise direction of a divergent-convergent nozzle through which CO2 in the supercritical pressure condition is blown down into the atmosphere. In the analysis, a one-dimensional model which assumes steady, adiabatic, frictionless, and equilibrium is proposed. In the convergent part of the nozzle the flow is treated as single-phase flow of liquid, whereas in the divergent part the flow is treated as separated two-phase flow with saturated condition. The analytical results indicate that the temperature and the pressure decrease rapidly in the divergent part, and the void fraction increases immediately near the throat. Although this analysis is quite simple, the analytical results can follow the experimental results well within this study. 展开更多
关键词 Carbon Dioxide High-Speed nozzle flow Gas-Liquid two-phase flow with Phase Change Blow down Test ONE-DIMENSIONAL ANALYSIS
下载PDF
Numerical Study on the Effects of Contraction Ratio in a Two-Phase Flow Injection Nozzle 被引量:1
11
作者 Haider Ali Kyung Won Kim +2 位作者 Jae Sik Kim Jong Yun Choi Cheol Woo Park 《Open Journal of Fluid Dynamics》 2016年第1期1-10,共10页
The Euler-Euler numerical method was used to investigate the effects of contraction ratio on twophase flow mixing with mass transfer in the flow injection nozzle. The geometric shape of the nozzle was modified to impr... The Euler-Euler numerical method was used to investigate the effects of contraction ratio on twophase flow mixing with mass transfer in the flow injection nozzle. The geometric shape of the nozzle was modified to improve carbonation efficiency. A gas inlet hole was created to increase the flow mixing of CO2 with water. A nozzle throat was also introduced to increase the gas dissolution by increasing flow rates. Various contraction ratios of nozzle throat, inlet gas and liquid velocities, and gas bubble sizes were employed to determine their effects on gas hold-up, gas concentration, and mass transfer coefficient. Results revealed that the flow injection nozzle with high contraction ratios improved carbonation because of high gas hold-up. Gas concentration was directly related to contraction ratio and gas flow velocities. Carbonation reduced when high liquid velocities and large gas bubbles were employed because of inefficient flow mixing. This study indicated that flow injection nozzle with large contraction ratios were suitable for carbonation because of their ability to increase gas hold-up, gas concentration, and mass transfer coefficient. 展开更多
关键词 flow Injection nozzle nozzle Throat Contraction Ratio Gas-Liquid flow Mass Transfer
下载PDF
Study on Venturi nozzle for gas-liquid two-phase flow metering
12
作者 梁法春 张修刚 +1 位作者 王栋 林宗虎 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第1期107-110,共4页
Experiments were carried out to study gas-liquid two-phase flow through a horizontally mounted Venturi nozzle. The inner diameter of pipe is 25 mm and the throat diameter of Venturi nozzle is 5. 1 mm. The pressure dif... Experiments were carried out to study gas-liquid two-phase flow through a horizontally mounted Venturi nozzle. The inner diameter of pipe is 25 mm and the throat diameter of Venturi nozzle is 5. 1 mm. The pressure difference and pressure loss across the nozzle were measured. It was found that the degree of pressure fluctuation strongly depends on the gas quality. However,the relationship between the standard deviation of pressure difference and the gas quality is not monotonous. Multiple solutions may occur when the relationship was used to determine gas quality. On the other hand,the standard deviation of pressure loss was found to be monotonously correlated to X. This phenomenon was applied to measured gas quality. Also a modified Lin's equation is proposed to calculate the two-phase flow rate. The experimental measurements agree well with the predicted values. 展开更多
关键词 two-phase flow Venturi nozzle flow measurement
下载PDF
Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow 被引量:2
13
作者 赵安 韩云峰 +2 位作者 任英玉 翟路生 金宁德 《Applied Geophysics》 SCIE CSCD 2016年第1期179-193,222,共16页
Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev... Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut. 展开更多
关键词 Oil-water two-phase flow low mixture velocity high water cut ultrasonic sensor water holdup
下载PDF
LARGE-EDDY SIMULATION OF TWO-PHASE REACTING FLOW IN MODEL COMBUSTOR 被引量:1
14
作者 颜应文 赵坚行 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第1期1-8,共8页
The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simu... The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible. 展开更多
关键词 two-phase reacting flow large-eddy simulation pollutant emission AFTERBURNER
下载PDF
Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh 被引量:1
15
作者 张学伟 李强 吕梦柔 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期253-257,共5页
In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the m... In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics(CFD),dynamic mesh and user defined function(UDF),the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out.The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity.When the projectile is launched at 5munder water,the shock wave before and after the projectile has impact on the box body up to 100 MPa,therefore the sealing device must be strong enough.The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation. 展开更多
关键词 two-phase flow SUPERCAVITATION sealing device computational fluid dynamics(CFD) dynamic mech
下载PDF
New numerical algorithm of gas-liquid two-phase flow considering characteristics of liquid metal during mold filling
16
作者 牛晓峰 方钊 +2 位作者 梁伟 侯华 王红霞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期790-797,共8页
A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Sto... A new program is developed for gas-liquid two-phase mold filling simulation in casting. The gas fluid, the superheated liquid metal and the liquid metal containing solid grains are assumed to be governed by Navier-Stokes equations and solved through Projection method. The Level set method is used to track the gas-liquid interface boundary. In order to demonstrate the correctness of this new program for simulation of gas-liquid two-phase mold filling in casting, a benchmark filling experiment is simulated (this benchmark test is designed by XU and the filling process is recorded by a 16-mm film camera). The simulated results agree very well with the experimental results, showing that this new program can be used to properly predicate the gas-liquid two-phase mold filling simulation in casting. 展开更多
关键词 finite difference method mold filling process Projection method Level set method two-phase flow numericalsimulation
下载PDF
Numerical simulation and analysis of solid-liquid two-phase threedimensional unsteady flow in centrifugal slurry pump 被引量:16
17
作者 吴波 汪西力 +1 位作者 LIU Hui 徐海良 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3008-3016,共9页
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of... Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump. 展开更多
关键词 slurry pump solid-liquid two-phase flow unsteady flow 3-D full passage numerical simulation
下载PDF
Design and Experimental Analyses of Small-flow High-head Centrifugal-vortex Pump for Gas-Liquid Two-phase Mixture 被引量:28
18
作者 朱祖超 谢鹏 +2 位作者 偶国富 崔宝玲 李昳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期528-534,共7页
The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-pha... The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-phase mixture. An HTB-5/60 type sample pump was developed and tested on a closed-loop test rig. Experimental studies on performance and cavitation tests for gas-liquid two-phase mixture were carried out compared with pure-water experimental results. Also the effect of gas phase on pump was analyzed and discussed. The experimental results show that performance and cavitation characteristics of the sample purnp deteriorates progressively with increasing volume fraction of gas. When the total capacity Qm is between 4.5 m^3·h^-1 and 6 m^3·h^-1 and the gas flow rate qg below 0.66 m^3·h^-1, or qg/Qm is lower than 15%, the characteristic curves are approximately parallel to those in pure water test, but the performance deteriorates sharply until an abrupt flow-cutting at a critical volume fraction of gas. This pump is found suitable for transporting gas-liquid two-phase mixture when working around rated capacity of 5 m^3·h^-1 with qglQm below 15%. 展开更多
关键词 centrifugal-vortex pump gas-liquid two-phase flow performance and cavitation test
下载PDF
Computational Analysis of Centrifugal Pump Delivering Solid-liquid Two-phase Flow during Startup Period 被引量:13
19
作者 ZHANG Yuliang LI Yi +1 位作者 ZHU Zuchao CUI Baoling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期178-185,共8页
The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all th... The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all the existing studies on this behavior are limited to using water as working fluid. The study on the transient behavior related to solid-liquid two-phase flow has not been seen yet. In order to explore the transient characteristics of a high specific-speed centrifugal pump during startup period delivering the pure water and solid-liquid two-phase flow, the transient flows inside the pump are numerically simulated using the dynamic mesh method. The variable rotational speed and flow rate with time obtained from experiment are best fitted as the function of time, and are written into computational fluid dynamics (CFD) code-FLUENT by using a user defined function. The predicted heads are compared with experimental results when pumping pure water. The results show that the difference in the transient performance during startup period is very obvious between water and solid-liquid two-phase flow during the later stage of startup process. Moreover, the time for the solid-liquid two-phase flow to achieve a stable condition is longer than that for water. The solid-liquid two-phase flow results in a higher impeller shaft power, a larger dynamic reaction force, a more violent fluctuation in pressure and a reduced stable pressure rise comparing with water. The research may be useful to tmderstanding on the transient behavior of a centrifugal pump under a solid-liquid two-phase flow during startup period. 展开更多
关键词 centrifugal pump solid-liquid two-phase flow STARTUP transient performance
下载PDF
Flow Regime Identification of Gas-liquid Two-phase Flow Based on HHT 被引量:11
20
作者 孙斌 张宏建 +1 位作者 程路 赵玉晓 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期24-30,共7页
A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed in... A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed into different intrinsic mode functions (IMFs) with HHT, then the energy fraction of each intrinsic mode and the mean value of residual function were calculated, from which the rules of flow regime identification were summarized. Experiments were carried out on two-phase flow in the horizontal tubes with 50mm and 40mm inner diameter, while water flowrate was in the range of 1.3m^3.h^-1 to 10.5m^3.h^-1, oil flowrate was from 4.2m^3.h^-1 to 7.0m^3.h^-1 and gas flowrate from 0 to 15m^3.h^-1. The results show that the proposed rules have high precision for single phase, bubbly, and slug, plug flow regirne identification, which are independent of not only properties of two-phase fluid. In addition, the method can meet the need of industrial application because of its simple calculation. 展开更多
关键词 flow regime Hilbert-Huang transform differential pressure signal intrinsic mode function gas-liquid two-phase flow
下载PDF
上一页 1 2 133 下一页 到第
使用帮助 返回顶部