期刊文献+
共找到7,079篇文章
< 1 2 250 >
每页显示 20 50 100
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
1
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser Gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
2
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity two-phase flow Pressure transient analysis
下载PDF
In vivo label-free measurement of blood flow velocity symmetry based on dual line scanning third-harmonic generation microscopy excited at the 1700 nm window
3
作者 Hui Cheng Jincheng Zhong +1 位作者 Ping Qiu Ke Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期61-68,共8页
Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the in... Measurement of bloodflow velocity is key to understanding physiology and pathology in vivo.While most measurements are performed at the middle of the blood vessel,little research has been done on characterizing the instantaneous bloodflow velocity distribution.This is mainly due to the lack of measurement technology with high spatial and temporal resolution.Here,we tackle this problem with our recently developed dual-wavelength line-scan third-harmonic generation(THG)imaging technology.Simultaneous acquisition of dual-wavelength THG line-scanning signals enables measurement of bloodflow velocities at two radially symmetric positions in both venules and arterioles in mouse brain in vivo.Our results clearly show that the instantaneous bloodflow velocity is not symmetric under general conditions. 展开更多
关键词 1700 nm-Window third-harmonic generation imaging blood flow velocity
下载PDF
Arbitrary High-Order Fully-Decoupled Numerical Schemes for Phase-Field Models of Two-Phase Incompressible Flows
4
作者 Ruihan Guo Yinhua Xia 《Communications on Applied Mathematics and Computation》 EI 2024年第1期625-657,共33页
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the... Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows. 展开更多
关键词 two-phase incompressible flows Fully-decoupled High-order accurate Linear implicit Spectral deferred correction method Local discontinuous Galerkin method
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
5
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
6
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
下载PDF
Numerical simulation of the effect of void fraction and inlet velocity on two-phase turbulence in bubble-liquid flows 被引量:3
7
作者 Lixing Zhou Rongxian Li Ruxu Du 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期425-432,共8页
There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble-liquid two-phase turbulence of the multiple bubbl... There are contradicted opinions on whether bubbles enhance or reduce the liquid turbulence. In this paper, the effect of void fraction and inlet velocity on the bubble-liquid two-phase turbulence of the multiple bubble-liquid jets in a two-dimensional channel is studied by using the two-phase second-order moment turbulence model. The results confirm the phenomena observed in experiments and reported in references that at a low void fraction and low inlet velocities the bubbles enhance the liquid turbulence, whereas at a high void fraction and high inlet velocities the bubbles reduce the liquid turbulence. 展开更多
关键词 Bubble-liquid flows two-phase turbulence Second-order moment model
下载PDF
Velocity Slip and Interfacial Momentum Transfer in the Transient Section of Supersonic Gas-Droplet Two-Phase Flows 被引量:1
8
作者 魏文韫 朱家骅 +2 位作者 夏素兰 戴光清 高旭东 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期163-169,共7页
Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for super-sonic two-phase (gas-droplet) flow in the transient section inside and outside a Laval jet(L J). The initial velocit... Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for super-sonic two-phase (gas-droplet) flow in the transient section inside and outside a Laval jet(L J). The initial velocity slipbetween gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) × 104 Pa. The relaxationtime corresponding to this transient process is in the range of 0.015-0.090 ms for the two-phase flow formed insidethe LJ and less than 0.5 ms outside the LJ. It demonstrates the unique performance of this system for application tofast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulationsof the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside theLJ. it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach numberdecreases. Due to compression by the shock wave at the end of the L J, the flow pattern becomes two dimensionaland viscous outside the LJ. Laser Doppler velocimeter (LDV) measurements of droplet velocities outside the LJ arein reasonably good agreement with the results of the simulation. 展开更多
关键词 速度滑脱 界面动量传递 界面动量转移 瞬时部分 超音速气体-液滴二相流动
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:1
9
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 flow assurance flow pattern Heat transfer flowlines two-phase flow Global sensitivity analysis
下载PDF
Numerical Simulation of a Two-Phase Flow with Low Permeability anda Start-Up Pressure Gradient 被引量:1
10
作者 Xuanyu Dong Jingyao Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期175-185,共11页
A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related n... A new numerical model for low-permeability reservoirs is developed.The model incorporates the nonlinear characteristics of oil-water two-phase flows while taking into account the initiation pressure gradient.Related numerical solutions are obtained using a finite difference method.The correctness of the method is demonstrated using a two-dimensional inhomogeneous low permeability example.Then,the differences in the cumulative oil and water production are investigated for different starting water saturations.It is shown that when the initial water saturation grows,the water content of the block continues to rise and the cumulative oil production gradually decreases. 展开更多
关键词 Low-permeability reservoirs two-phase flow water cut start-up pressure gradient non-darcy flow
下载PDF
Flow characteristics and regime transition of aqueous foams in porous media over a wide range of quality,velocity,and surfactant concentration 被引量:1
11
作者 Bin-Fei Li Meng-Yuan Zhang +3 位作者 Zhao-Min Li Anthony Kovscek Yan Xin Bo-Liang Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1044-1052,共9页
Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T... Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams. 展开更多
关键词 Foam flow regime and transition Porous media Pressure gradient flow velocity Surfactant concentration Foam quality
下载PDF
Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas–liquid slug flow by using ultrasonic Doppler method 被引量:1
12
作者 Lusheng Zhai Bo Xu +1 位作者 Haiyan Xia Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期323-340,共18页
Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterize... Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows. 展开更多
关键词 Gas–liquid flow Complex fluids Measurement Ultrasonic Doppler velocity profile Liquid film thickness
下载PDF
Liquid-liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance
13
作者 Ming Chen Huiyan Jiao +3 位作者 Jun Li Zhibin Wang Feng He Yang Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期281-289,共9页
In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are o... In this work, flow pattern and mass transfer of liquid-liquid two-phase flow in a wire-embedded concentric microchannel are studied using toluene-water system. Droplet flow, slug flow, oval flow and annular flow are observed in the wire-embedded concentric microchannel. The effects of embedded wires and physical properties on flow patterns are investigated. The embedded wire insert is conducive to the formation of annular flow. The flow pattern distribution regions are distinguished by the Caaq(capillary number)±We_(org)(Weber number) flow pattern map. When Weorg<0.001, slug flow is the main flow pattern, and when Weorg>0.1, annular flow is the main flow pattern. Oval flow and droplet flow are between We_(org)= 0.001-0.1, and oval flow is transformed into droplet flow with the increase of Caaq. The effect of flow rate, phase ratio, initial acetic acid concentration, insert shape and flow patterns on mass transfers are studied. Mass transfer process is enhanced under annular flow conditions, the volumetric mass transfer coefficient is up to 0.36 s^(-1) because of the high interfacial area and interface renewal rate of annular flow. 展开更多
关键词 flow pattern Mass transfer Microchannels two-phase flow
下载PDF
Comprehensive modeling of frictional pressure drop during carbon dioxide two-phase flow inside channels using intelligent and conventional methods
14
作者 Mohammad Amin Moradkhani Seyyed Hossein Hosseini Mengjie Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期108-119,共12页
Environmentally friendly nature of CO_(2),associated with its safety and high efficiency,has made it a widely used working fluid in heat exchangers.Since CO_(2)has strange thermophysical features,specific models are r... Environmentally friendly nature of CO_(2),associated with its safety and high efficiency,has made it a widely used working fluid in heat exchangers.Since CO_(2)has strange thermophysical features,specific models are required to estimate its two-phase characteristics,particularly frictional pressure drop(FPD).Herein,a widespread dataset,comprising 1195 experimental samples for two-phase FPD of CO_(2)was adopted from 10 sources to fulfill this requirement.The literature correlations failed to provide satisfactory precisions and exhibited the average absolute relative errors(AAREs)between 29.29% and 67.69% from the analyzed data.By inspiring the theoretical method of Lockhart and Martinelli,three intelligent FPD models were presented,among which the Gaussian process regression approach surpassed the others with AARE and R^(2)values of 5.48% and 98.80%,respectively in the test stage.A novel simple correlation was also derived based on the least square fitting method,which yielded opportune predictions with AARE of 19.76% for all data.The truthfulness of the newly proposed models was assessed through a variety of statistical and visual analyses,and the results affirmed their high reliability over a broad range of conditions,channel sizes and flow patterns.Furthermore,the novel models performed favorably in describing the physical attitudes corresponding to two-phase FPD of CO_(2).Eventually,the importance of operating factors in controlling the FPD was discussed through a sensitivity analysis. 展开更多
关键词 CO_(2) two-phase flow Frictional pressuredrop Intelligent approaches CORRELATION
下载PDF
Simulation of gas–liquid two-phase flow in a flow-focusing microchannel with the lattice Boltzmann method
15
作者 冯凯 杨刚 张会臣 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期527-536,共10页
A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, su... A lattice Boltzmann method for gas–liquid two-phase flow involving non-Newtonian fluids is developed. Bubble formation in a flow-focusing microchannel is simulated by the method. The influences of flow rate ratio, surface tension,wetting properties, and rheological characteristics of the fluid on the two-phase flow are analyzed. The results indicate that the flow pattern transfers from slug flow to dry-plug flow with a sufficiently small capillary number. Due to the presence of three-phase contact lines, the contact angle has a more significant effect on the dry-plug flow pattern than on the slug flow pattern. The deformation of the front and rear meniscus of a bubble in the shear-thinning fluid can be explained by the variation of the capillary number. The reduced viscosity and increased contact angle are beneficial for the drag reduction in a microchannel. It also demonstrates the effectiveness of the current method to simulate the gas–liquid two-phase flow in a microchannel. 展开更多
关键词 two-phase flow lattice Boltzmann method pressure drop flow-focusing microchannel
下载PDF
Experiments on two-phase flow in hydraulic jump on pebbled rough bed:Part 1–Turbulence properties and particle chord time and length
16
作者 Farhad Bahmanpouri Carlo Gualtieri Hubert Chanson 《Water Science and Engineering》 EI CAS CSCD 2023年第4期359-368,共10页
This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time ... This study reported and discussed turbulence characteristics,such as turbulence intensity,correlation time scales,and advective length scales.The characteristic air–water time scale,including the particle chord time and length and their probability density functions(PDFs),was investigated.The results demonstrated that turbulence intensity was relatively greater on a rough bed in the roller length,whereas further downstream,the decay rate was higher.In addition,the relationship between turbulence intensity and dimensionless bubble count rate reflected an increase in turbulence intensity associated with the number of entrained particles.Triple decomposition analysis(TDA)was performed to determine the contributions of slow and fast turbulent components.The TDA results indicated that,regardless of bed type and inflow conditions,the sum of the band-pass(T'_(u))and high-pass(T″_(u))filtered turbulence intensities was equal to the turbulence intensity of the raw signal data(T_(u)).T″_(u) highlighted a higher turbulence intensity and larger vorticities on the rough bed for an identical inflow Froude number.Additional TDA results were presented in terms of the interfacial velocity,auto-and cross-correlation time scales,and longitudinal advection length scale,with the effects of low-and high-frequency signal components on each highlighted parameter.The analysis of the air chord time indicated an increase in the proportion of small bubbles moving downstream.The second part of this research focused on the basic properties of particle grouping and clustering. 展开更多
关键词 Hydraulic jump Pebbled rough bed Turbulence intensity Particle chord time two-phase flow
下载PDF
Experimental Investigation of Regular or Wavy Two-Phase Flow in a Manifold
17
作者 Xiaowei Nie Lihui Ma +7 位作者 Yiqiu Xu Dong Sun Weibo Zheng Liang Zhou Xiaodong Wang Xiaohan Zhang Weijia Dong Yunfei Li 《Fluid Dynamics & Materials Processing》 EI 2023年第1期37-50,共14页
An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid... An experimental study was conducted to investigate the properties of stratified regular or wavy two-phase flow in two parallel separators located after a manifold.A total of 103 experiments with various gas and liquid velocity combinations in three inlet pipes were conducted,including 77 groups of outlet pipe resistance symmetry and 26 groups of outlet pipe resistance asymmetry trials.The experimental results have revealed that when the gas-liquid flow rate is low,the degree of uneven splitting is high,and“extreme”conditions are attained.When the superficial gas velocity is greater than that established in the extreme case,the direction of the liquid-phase displacement is reversed,while that of the gas remains unchanged.Thus,the degree of gas phase bias tends to be mitigated with an increase in the gas velocity,while the uneven splitting degree of liquid approaches 10%.Finally,varying the gas-phase outlet pipe resistance is shown to effectively change the gas-liquid two-phase flow distribution. 展开更多
关键词 Uneven phase distribution two-phase flow MANIFOLD asymmetric resistance
下载PDF
Experiments on two-phase flow in hydraulic jump on pebbled rough bed:Part 2–Bubble clustering
18
作者 Farhad Bahmanpouri Carlo Gualtieri Hubert Chanson 《Water Science and Engineering》 EI CAS CSCD 2023年第4期369-380,共12页
A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed.... A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed.As a first attempt,this study examined the bubble clustering process in hydraulic jumps on a pebbled rough bed using experimental data for 1.70<Fr_(1)<2.84(with Fr_(1) denoting the inflow Froude number).The basic properties of particle grouping and clustering,including the number of clusters,the dimensionless number of clusters per second,the percentage of clustered bubbles,and the number of bubbles per cluster,were analyzed based on two criteria.For both criteria,the maximum cluster count rate was greater on the rough bed than on the smooth bed,suggesting greater interactions between turbulence and bubbly flow on the rough bed.The results were consistent with the longitudinal distribution of the interfacial velocity using one of the criteria.In addition,the clustering process was analyzed using a different approach:the interparticle arrival time of bubbles.The comparison showed that the bubbly flow structure had a greater density of bubbles per unitflux on the rough bed than on the smooth bed.Bed roughness was the dominant parameter close to the jump toe.Further downstream,Fr_(1) predominated.Thus,the rate of bubble density decreased more rapidly for the hydraulic jump with the lowest Fr_(1). 展开更多
关键词 Hydraulic jump Pebbled rough bed Clustering analysis Interparticle arrival time two-phase flow
下载PDF
Simulation of Gas-Water Two-Phase Flow in Tight Gas Reservoirs Considering the Gas Slip Effect
19
作者 Mingjing Lu Zenglin Wang +3 位作者 Aishan Li Liaoyuan Zhang Bintao Zheng Zilin Zhang 《Fluid Dynamics & Materials Processing》 EI 2023年第5期1269-1281,共13页
A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are s... A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated.The model can account for the gas slip effect,stress sensitivity,and high-speed non-Darcy factors.The related equations are solved in the framework of a finite element method.The results are validated against those obtained by using the commercial software CMG(Computer Modeling Group software for advanced recovery process simulation).It is shown that the proposed method is reliable.It can capture the fracture rejection characteristics of tight gas reservoirs better than the CMG.A sensitivity analysis of various control factors(initial water saturation,reservoir parameters,and fracturing parameters)affecting the production in tight gas wells is conducted accordingly.Finally,a series of theoretical arguments are provided for a rational and effective development/exploitation of tight sandstone gas reservoirs. 展开更多
关键词 Tight gas reservoir gas-water two-phase flow numerical simulation fractured horizontal well gas slip effect
下载PDF
Transient pressure analysis of polymer flooding fractured wells with oil-water two-phase flow
20
作者 WANG Yang YU Haiyang +2 位作者 ZHANG Jia FENG Naichao CHENG Shiqing 《Petroleum Exploration and Development》 2023年第1期175-182,共8页
The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusio... The oil-water two-phase flow pressure-transient analysis model for polymer flooding fractured well is established by considering the comprehensive effects of polymer shear thinning,shear thickening,convection,diffusion,adsorption retention,inaccessible pore volume and effective permeability reduction.The finite volume difference and Newton iteration methods are applied to solve the model,and the effects of fracture conductivity coefficient,injected polymer mass concentration,initial polymer mass concentration and water saturation on the well-test type curves of polymer flooding fractured wells are discussed.The results show that with the increase of fracture conductivity coefficient,the pressure conduction becomes faster and the pressure drop becomes smaller,so the pressure curve of transitional flow goes downward,the duration of bilinear flow becomes shorter,and the linear flow appears earlier and lasts longer.As the injected polymer mass concentration increases,the effective water phase viscosity increases,and the pressure loss increases,so the pressure and pressure derivative curves go upward,and the bilinear flow segment becomes shorter.As the initial polymer mass concentration increases,the effective water phase viscosity increases,so the pressure curve after the wellbore storage segment moves upward as a whole.As the water saturation increases,the relative permeability of water increases,the relative permeability of oil decreases,the total oil-water two-phase mobility becomes larger,and the pressure loss is reduced,so the pressure curve after the wellbore storage segment moves downward as a whole.The reliability and practicability of this new model are verified by the comparison of the results from simplified model and commercial well test software,and the actual well test data. 展开更多
关键词 fractured vertical well polymer flooding two-phase flow well test analysis model type curve influence factor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部