Fine bubbles have been widely applied in many fields such as industry,medical engineering and agricultures.Therefore,many attentions have been paid to the study of fine bubble generations in order to increase the yiel...Fine bubbles have been widely applied in many fields such as industry,medical engineering and agricultures.Therefore,many attentions have been paid to the study of fine bubble generations in order to increase the yield while decrease the cost.However,the generation process of fine bubbles is a quite complicated process in which multiple hydrodynamic forces are interacted in the gas-liquid two-phase flow.Many studies focus on the techniques of the converging-diverging nozzle(venturi tube)generator,which is famous for its simple and cheap features,and generates fine bubbles by using the miniaturization phenomenon of bubbles occurring in the venturi tube.However,the impact conditions on the amount and size of bubbles such as nozzle geometry and bleed air haven’t been investigated clearly.In this work,we implement many experiments on the venturi tube fine bubble generators with different geometries and generating conditions,and evaluate different factors impacting the production components such as the volume and the bubble size.The experimental results show that the supersonic flow filed in the venturi tube promotes the miniaturization of the bubbles,and the convergent angle of the nozzle and air bleed have a great impact on the size and volume of bubbles.展开更多
A compressible and multiphase flows solver has been developed for the study of liquid/gas flows involving shock waves and strong expansion waves leading to cavitation.This solver has a structure similar to those of th...A compressible and multiphase flows solver has been developed for the study of liquid/gas flows involving shock waves and strong expansion waves leading to cavitation.This solver has a structure similar to those of the one-fluid Euler solvers,differing from them by the presence of a void ratio transport-equation.The model and the system of equations to be simulated are presented.Results are displayed for shock and expansion tube problems,shock-bubble interaction and underwater explosion.Close agreement with reference solutions,obtained from explicit finite volume approaches,is demonstrated.Different numerical methods are additionally displayed to provide comparable and improved computational efficiency to the model and the system of equations.The overall procedure is therefore very well suited for use in general two-phase fluid flow simulations.展开更多
Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and ...Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and form of the transmitting roadways and the influence of obstacles.The following characterizes the propagation of coal and gas outbursts as two-phase gas-solid flows proximal to source where the coupled effects of pulverized coal and gas flows dominate behavior.The characteristics of shock wave propagation and attenuation were systematically examined for varied roadway geometries using experiments and numerical models.The results demonstrate that the geometry of roadway obstructions is significant and may result in partial compression and sometimes secondary overpressurization in blocked and small comer roadways leading to significant attenuation of outburst shock waves.The shock waves attenuate slowly in both straight and abruptly expanding roadways and more significantly in T-shaped roadways.The most significant attenuation appears in small angle comers and bifurcations in roadways with the largest attenuation occurring in blocked roadways.These results provide basic parameters for simplifying transport in complex roadway networks in the far-field,and guidance for the design of coal and gas outburst prevention facilities and emergency rescue.展开更多
Two-phase reacting flow induced by a sufficiently strong shock wave impacting on an interface of combustible dust suspension at an angle of 0?or passing over a combustible dust deposit at an angle of 90° has been...Two-phase reacting flow induced by a sufficiently strong shock wave impacting on an interface of combustible dust suspension at an angle of 0?or passing over a combustible dust deposit at an angle of 90° has been investigated experimentally and numerically.The.onset and development processes of interactions have been discussed according to the results reported.Computed and measured results are in reasonable agreement.展开更多
鉴于爆震燃烧具有自增压、传播速度快等优点,提出了将燃气轮机中等压燃烧替换为爆震燃烧的理念,并建立了基于爆震燃烧的燃气轮机理想热力循环模型,对比研究了DCGT(detonation cycle of gas turbine)、Brayton和Humphrey 3种循环燃气轮...鉴于爆震燃烧具有自增压、传播速度快等优点,提出了将燃气轮机中等压燃烧替换为爆震燃烧的理念,并建立了基于爆震燃烧的燃气轮机理想热力循环模型,对比研究了DCGT(detonation cycle of gas turbine)、Brayton和Humphrey 3种循环燃气轮机的综合性能。在压气机压比、吸热量和透平背压相同的条件下,数据分析结果表明DCGT循环燃气轮机较其他2种循环更具优势,在压比为16时其循环热效率较Brayton循环提高15.4%,燃料消耗率降低13.5%;DCGT循环燃气轮机在压比为6.6时的总体性能与压比为16时的Brayton循环相当。展开更多
Keller proposed that a building, a mechanical installation or a body wrapped bya layer of foam plastics may be an efficient means for protection from damage ofblast wave. However, the practical effect was beyond expec...Keller proposed that a building, a mechanical installation or a body wrapped bya layer of foam plastics may be an efficient means for protection from damage ofblast wave. However, the practical effect was beyond expectation. For example, agunner wearing the foam plastics-padded waistcoat was injured more seriously by theblast wave from a muzzle. Monti took the foam plastics as homogeneous two-phasemedium and analyzed it with the theory of dusty flow. The obtained results showthat the peak pressure behind the reflected shock wave from rigid wall with foamcoat exceeds obviously that without foam coat under the same condition. Gel’fand,Patz and Weaver made experimental observations by means of shock tubes and veri-展开更多
基金supported by the Mishima Laboratory in Fukuoka University。
文摘Fine bubbles have been widely applied in many fields such as industry,medical engineering and agricultures.Therefore,many attentions have been paid to the study of fine bubble generations in order to increase the yield while decrease the cost.However,the generation process of fine bubbles is a quite complicated process in which multiple hydrodynamic forces are interacted in the gas-liquid two-phase flow.Many studies focus on the techniques of the converging-diverging nozzle(venturi tube)generator,which is famous for its simple and cheap features,and generates fine bubbles by using the miniaturization phenomenon of bubbles occurring in the venturi tube.However,the impact conditions on the amount and size of bubbles such as nozzle geometry and bleed air haven’t been investigated clearly.In this work,we implement many experiments on the venturi tube fine bubble generators with different geometries and generating conditions,and evaluate different factors impacting the production components such as the volume and the bubble size.The experimental results show that the supersonic flow filed in the venturi tube promotes the miniaturization of the bubbles,and the convergent angle of the nozzle and air bleed have a great impact on the size and volume of bubbles.
基金The authors gratefully thank K.Tang and A.Beccantini fromthe Commissariata l’Energie Atomique for having provided the numerical solutions computed with their sevenequation model.The second author would like to particularly acknowledge the support provided by the German Jordanian University through the project SEED-SNRE 7-2014.
文摘A compressible and multiphase flows solver has been developed for the study of liquid/gas flows involving shock waves and strong expansion waves leading to cavitation.This solver has a structure similar to those of the one-fluid Euler solvers,differing from them by the presence of a void ratio transport-equation.The model and the system of equations to be simulated are presented.Results are displayed for shock and expansion tube problems,shock-bubble interaction and underwater explosion.Close agreement with reference solutions,obtained from explicit finite volume approaches,is demonstrated.Different numerical methods are additionally displayed to provide comparable and improved computational efficiency to the model and the system of equations.The overall procedure is therefore very well suited for use in general two-phase fluid flow simulations.
基金the State Key Research Development Program of China(Grant No.2018YFC0808101)the National Natural Science Foundation of China(51774292,51874314,51604278,51804312)the Yue Qi Distinguished Scholar Project,China University of Mining&Technology,Beijing,the Yue Qi Young Scholar Project,China University of Mining&Technology,Beijing.
文摘Coal and gas outbursts compromise two-phase gas-solid mixtures as they propagate as shock waves and flows from their sources.Propagation is influenced by the form of the outburst,proximity to source,the structure and form of the transmitting roadways and the influence of obstacles.The following characterizes the propagation of coal and gas outbursts as two-phase gas-solid flows proximal to source where the coupled effects of pulverized coal and gas flows dominate behavior.The characteristics of shock wave propagation and attenuation were systematically examined for varied roadway geometries using experiments and numerical models.The results demonstrate that the geometry of roadway obstructions is significant and may result in partial compression and sometimes secondary overpressurization in blocked and small comer roadways leading to significant attenuation of outburst shock waves.The shock waves attenuate slowly in both straight and abruptly expanding roadways and more significantly in T-shaped roadways.The most significant attenuation appears in small angle comers and bifurcations in roadways with the largest attenuation occurring in blocked roadways.These results provide basic parameters for simplifying transport in complex roadway networks in the far-field,and guidance for the design of coal and gas outburst prevention facilities and emergency rescue.
文摘Two-phase reacting flow induced by a sufficiently strong shock wave impacting on an interface of combustible dust suspension at an angle of 0?or passing over a combustible dust deposit at an angle of 90° has been investigated experimentally and numerically.The.onset and development processes of interactions have been discussed according to the results reported.Computed and measured results are in reasonable agreement.
文摘鉴于爆震燃烧具有自增压、传播速度快等优点,提出了将燃气轮机中等压燃烧替换为爆震燃烧的理念,并建立了基于爆震燃烧的燃气轮机理想热力循环模型,对比研究了DCGT(detonation cycle of gas turbine)、Brayton和Humphrey 3种循环燃气轮机的综合性能。在压气机压比、吸热量和透平背压相同的条件下,数据分析结果表明DCGT循环燃气轮机较其他2种循环更具优势,在压比为16时其循环热效率较Brayton循环提高15.4%,燃料消耗率降低13.5%;DCGT循环燃气轮机在压比为6.6时的总体性能与压比为16时的Brayton循环相当。
基金Project supported by the National Natural Science Foundation of China.
文摘Keller proposed that a building, a mechanical installation or a body wrapped bya layer of foam plastics may be an efficient means for protection from damage ofblast wave. However, the practical effect was beyond expectation. For example, agunner wearing the foam plastics-padded waistcoat was injured more seriously by theblast wave from a muzzle. Monti took the foam plastics as homogeneous two-phasemedium and analyzed it with the theory of dusty flow. The obtained results showthat the peak pressure behind the reflected shock wave from rigid wall with foamcoat exceeds obviously that without foam coat under the same condition. Gel’fand,Patz and Weaver made experimental observations by means of shock tubes and veri-