期刊文献+
共找到214,385篇文章
< 1 2 250 >
每页显示 20 50 100
An improved large eddy simulation of two-phase flows in a pump impeller 被引量:10
1
作者 Xuelin Tang Fujun Wang Yulin Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第6期635-643,共9页
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating c... An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results. 展开更多
关键词 Large eddy simulation Second-order sub-grid-scale stress model Turbulent two-phase flow Pump impeller
下载PDF
A consistent projection-based SUPG/PSPG XFEM for incompressible two-phase flows 被引量:2
2
作者 Jian-Hui Liao Zhuo Zhuang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1309-1322,共14页
In this paper, a consistent projection-based streamline upwind/pressure stabilizing Petrov-Galerkin (SUPG/PSPG) extended finite element method (XFEM) is presented to model incompressible immiscible two-phase flows... In this paper, a consistent projection-based streamline upwind/pressure stabilizing Petrov-Galerkin (SUPG/PSPG) extended finite element method (XFEM) is presented to model incompressible immiscible two-phase flows. As the application of linear elements in SUPG/PSPG schemes gives rise to inconsistency in stabilization terms due to the inability to regenerate the diffusive term from viscous stresses, the numerical accuracy would deteriorate dramatically. To address this issue, projections of convection and pressure gradient terms are constructed and incorporated into the stabilization formulation in our method. This would substantially recover the consistency and free the practitioner from burdensome computations of most items in the residual. Moreover, the XFEM is employed to consider in a convenient way the fluid properties that have interfacial jumps leading to discontinuities in the velocity and pressure fields as well as the projections. A number of numerical examples are analyzed to demonstrate the complete recovery of consistency, the reproduction of interfacial discontinuities and the ability of the proposed projection-based SUPG/PSPG XFEM to model two-phase flows with open and closed interfaces. 展开更多
关键词 two-phase flow XFEM SUPG/PSPG algorithm Consistency Discontinuous projection
下载PDF
IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS 被引量:2
3
作者 唐学林 钱忠东 吴玉林 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第4期354-365,共12页
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision ter... The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules.Assuming that the solid-phase velocity distributions obey the Maxwell equations,the collision term for particles under dense two-phase flow conditions is also derived. In comparison with the governing equations of a dilute two-phase flow,the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations.Based on Cauchy-Helmholtz theorem and Smagorinsky model, a second-order dynamic sub-grid-scale(SGS)model,in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor,is proposed to model the two-phase governing equations by applying dimension analyses.Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls,the velocity and pressure fields,and the volumetric concentration are calculated.The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical. 展开更多
关键词 kinetic theory turbulent two-phase flow dynamic sub-grid-scale model CONDUIT
下载PDF
Numerical Simulation of the Gas-solid Two-phase Flows in a Precalciner 被引量:1
4
作者 王家楣 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第4期177-179,共3页
The gas-solid two-phase flous of the precalciner were simulated by different multiphase models,such as mixture model,the Enderium model,including mixture and dispersed,and discrete phase model(DPM),The results of th... The gas-solid two-phase flous of the precalciner were simulated by different multiphase models,such as mixture model,the Enderium model,including mixture and dispersed,and discrete phase model(DPM),The results of the different multiphase models were analyzed and compared.showing the rationality of the diffusion and mixture of the cenment raic meals and coal poroder some extent Moreover,the results also shose the rationality of the given inlets parameters of actual process of the precalciner. 展开更多
关键词 preculciner gas-solid two-phase flow mumerical simulation
下载PDF
A hybrid scheme for computing incompressible two-phase flows
5
作者 周军 蔡力 周凤岐 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1535-1544,共10页
We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marke... We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marker and cell method. Meanwhile, the moment equations in the incompressible Navier-Stokes equations are solved by our semidiscrete Hermite central-upwind scheme, and the interface between the two fluids is considered to be continuous and is described implicitly as the 0.5 level set of a smooth function being a smeared out Heaviside function. It is here named the hybrid scheme. Some numerical experiments are successfully carried out, which verify the desired efficiency and accuracy of our hybrid scheme. 展开更多
关键词 two-phase flow incompressible flow numerical method
下载PDF
An Experimental Study on the Void Fraction for Gas-Liquid Two-Phase Flows in a Horizontal Pipe
6
作者 Li Lei Jun An +4 位作者 Fushun Liang Cheng Cheng Naixiang Zhou Yanhong Ning Jingzhi Zhang 《Fluid Dynamics & Materials Processing》 EI 2021年第6期1037-1048,共12页
The flow patterns and the void fraction related to a gas-liquid two-phase flow in a small channel are experimentally studied.The test channel is a transparent quartz glass circular channel with an inner diameter of 6.... The flow patterns and the void fraction related to a gas-liquid two-phase flow in a small channel are experimentally studied.The test channel is a transparent quartz glass circular channel with an inner diameter of 6.68 mm.The working fluids are air and water and their superficial velocities range from 0.014 to 8.127 m/s and from 0.0238 to 0.556 m/s,respectively.The void fraction is determined using the flow pattern images captured by a high-speed camera,while quick closing valves are used for verification.Four flow patterns are analyzed in experiments:slug flow,bubbly flow,annular flow and stratified flow.For intermittent flows(bubbly flow and slug flow),the cross-sectional void fraction is in a borderline condition while its probability distribution function(PDF)image displays a bimodal structure.For continuous flows(annular flow and stratified flow)the cross-sectional void fraction behaves as a fluctuating continuous curve while the(PDF)image displays a single peak structure.The volumetric void fraction data are also compared with available predictive formulas,and the results show that the agreement is very good.An effort is also provided to improve the so-called Gregory and Scott model using the available data. 展开更多
关键词 Gas-liquid two-phase flow small channel flow regime map probability distribution function void fraction
下载PDF
A K-εTWO-EQUATION TURBULENCE MODEL FOR THE SOLID-LIQUID TWO-PHASE FLOWS  被引量:1
7
作者 刘小兵 程良骏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第6期523-531,共9页
A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carr... A two-equation turbulence model has been dereloped for predicting two-phase flow the two equations describe the conserration of turbulence kinetic energy and dissipation rate of that energy for the incompressible carrier fluid in a two-phase flow The continuity, the momentum, K and εequations are modeled. In this model,the solid-liquid slip veloeites, the particle-particte interactions and the interactions between two phases are considered,The sandy water pipe turbulent flows are sueeessfuly predicted by this turbulince model. 展开更多
关键词 solid-liqtlid two-phase. K-εtwo-equation turbulence model
下载PDF
Analysis of choked two-phase flows of gas and particle in a C-D nozzle
8
作者 Guang Zhang Heuy Dong Kim Ying Zi Jin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第6期331-338,共8页
Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of n... Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of nozzle performance. In the present studies, theoretical analysis and numerical simulations were carried out to investigate particle-gas flows in a C-D nozzle. Homogeneous equilibrium model that no lag in velocity and temperature occurs between particles and gas phase was used to derive mass flow rate and sound speed of multiphase flows. Two-phase flows are regarded as isentropic flows that isentropic relations can be used for homogeneous equilibrium model. Discrete phase model (DPM) where interaction with continuous phase and discrete random walk model were considered was used to calculate particle- gas flows. Particle mass loadings were varied to investigate their effects on choking phenomena of particle-gas flows. Mass flow rate and sound speed of mixture flows were theoretically calculated by homogeneous equilibrium model and compared with numerical results. Shock wave structure and particle number density were also obtained to be different at different particle mass loading and operating pressure conditions. 展开更多
关键词 Multiphase flows Particle number density Shock wave Sound speed of mixture flow choking
下载PDF
NUMERICAL SIMULATION OF 1-D UNSTEADY TWO-PHASE FLOWS WITH SHOCKS
9
作者 吴清松 王柏懿 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第7期629-635,共7页
In the present paper, random-choice method (RCM) and second-order GRP difference method, which are high resolution methods used for pure gas flows with shocks, are extended and employed to study the problem of one-dim... In the present paper, random-choice method (RCM) and second-order GRP difference method, which are high resolution methods used for pure gas flows with shocks, are extended and employed to study the problem of one-dimensional unsteady two-phase flows. The two-phase shock wave and the flow field behind it in a dusty gas shock tube are calculated and the time-dependent change of the flow parameters for the gas and particle phase are obtained. The numerical results indicate that both the two methods can give the relaxation structure of the two-phase shocks with a sharp discontinuous front and that the GRP method has the advantages of less time-consuming and higher accuracy over the RCM method. 展开更多
关键词 Gas dynamics Granular materials Mathematical models Numerical methods Relaxation processes Shock tubes Shock waves Unsteady flow
下载PDF
Phase identification by a novel needle-contact capacitance probe in gas-liquid two-phase flows 被引量:1
10
作者 HUANG Shanfang LU Jun +1 位作者 ZHANG Bingdong WANG Dong 《Nuclear Science and Techniques》 SCIE CAS CSCD 2010年第5期316-320,共5页
In this paper,we propose a novel probe to identify phases in any two-phase flows where one phase is conductive and the other nonconductive.We can further obtain many parameters such as void fraction,bubble velocity,an... In this paper,we propose a novel probe to identify phases in any two-phase flows where one phase is conductive and the other nonconductive.We can further obtain many parameters such as void fraction,bubble velocity,and interfacial area concentration.Compared with the traditional probe,the novel probe has unique advantages that it is less dependent on water conductance or distance between the electrodes,and that the amplitude is bigger between high and low levels.Theoretical analyses showed that the measurement error became higher when water conductance decreases or distance increases,which is consistent with the theoretical analyses.Experimental results showed that the output signal kept constant with salt content of 0-5% and electrode distance of 0-30 mm in tap water.The level difference was up to 6.4 V,resulting in identifying two phases easily.Time traces of phase identification were completely consistent with the flow structures. 展开更多
关键词 气液两相流 探头 接触式 鉴定 一阶 电导电极 水电导率 气泡速度
下载PDF
Deduction and Validation of an Eulerian-Eulerian Model for Turbulent Dilute Two-Phase Flows by Means of the Phase Indicator Function-Disperse Elements Probability Density Function
11
作者 Santiago Laín Ricardo Aliod 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第3期189-202,共14页
A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent flows.Phase ... A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent flows.Phase interaction terms with a clear physical meaning enter the equations and the formalism provides some guidelines for the avoidance of closure assumptions or the rational approximation of these terms. Continuous phase averaged continuity, momentum, turbulent kinetic energy and turbulence dissipation rate equations have been rigorously and systematically obtained in a single step. These equations display a structure similar to that for single-phase flows.It is also assumed that dispersed phase dynamics is well described by a probability density function (pdf) equation and Eulerian continuity, momentum and fluctuating kinetic energy equations for the dispersed phase are deduced.An extension of the standard k-c turbulence model for the continuous phase is used. A gradient transport model is adopted for the dispersed phase fluctuating fluxes of momentum and kinetic energy at the non-colliding, large inertia limit. This model is then used to predict the behaviour of three axisymmetric turbulent jets of air laden with solid particles varying in size and concentration. Qualitative and quantitative numerical predictions compare reasonably well with the three different sets of experimental results, studying the influence of particle size, loading ratio and flow confinement velocity. 展开更多
关键词 相指示器函数方法 分散元概率密度函数 推导 验证 湍流 两相流 欧拉-欧拉模型
下载PDF
Velocity Slip and Interfacial Momentum Transfer in the Transient Section of Supersonic Gas-Droplet Two-Phase Flows 被引量:1
12
作者 魏文韫 朱家骅 +2 位作者 夏素兰 戴光清 高旭东 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期163-169,共7页
Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for super-sonic two-phase (gas-droplet) flow in the transient section inside and outside a Laval jet(L J). The initial velocit... Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for super-sonic two-phase (gas-droplet) flow in the transient section inside and outside a Laval jet(L J). The initial velocity slipbetween gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) × 104 Pa. The relaxationtime corresponding to this transient process is in the range of 0.015-0.090 ms for the two-phase flow formed insidethe LJ and less than 0.5 ms outside the LJ. It demonstrates the unique performance of this system for application tofast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulationsof the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside theLJ. it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach numberdecreases. Due to compression by the shock wave at the end of the L J, the flow pattern becomes two dimensionaland viscous outside the LJ. Laser Doppler velocimeter (LDV) measurements of droplet velocities outside the LJ arein reasonably good agreement with the results of the simulation. 展开更多
关键词 速度滑脱 界面动量传递 界面动量转移 瞬时部分 超音速气体-液滴二相流动
下载PDF
Arbitrary High-Order Fully-Decoupled Numerical Schemes for Phase-Field Models of Two-Phase Incompressible Flows
13
作者 Ruihan Guo Yinhua Xia 《Communications on Applied Mathematics and Computation》 EI 2024年第1期625-657,共33页
Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple the... Due to the coupling between the hydrodynamic equation and the phase-field equation in two-phase incompressible flows,it is desirable to develop efficient and high-order accurate numerical schemes that can decouple these two equations.One popular and efficient strategy is to add an explicit stabilizing term to the convective velocity in the phase-field equation to decouple them.The resulting schemes are only first-order accurate in time,and it seems extremely difficult to generalize the idea of stabilization to the second-order or higher version.In this paper,we employ the spectral deferred correction method to improve the temporal accuracy,based on the first-order decoupled and energy-stable scheme constructed by the stabilization idea.The novelty lies in how the decoupling and linear implicit properties are maintained to improve the efficiency.Within the framework of the spatially discretized local discontinuous Galerkin method,the resulting numerical schemes are fully decoupled,efficient,and high-order accurate in both time and space.Numerical experiments are performed to validate the high-order accuracy and efficiency of the methods for solving phase-field models of two-phase incompressible flows. 展开更多
关键词 two-phase incompressible flows Fully-decoupled High-order accurate Linear implicit Spectral deferred correction method Local discontinuous Galerkin method
下载PDF
Entropic Multi-Relaxation-Time Lattice Boltzmann Model for Large Density Ratio Two-Phase Flows
14
作者 S.A.Hosseini B.Dorschner I.V.Karlin 《Communications in Computational Physics》 SCIE 2023年第1期39-56,共18页
We propose a multiple relaxation time entropic realization of a recent twophase flow lattice Boltzmann model[S.A.Hosseini,B.Dorschner,and I.V.Karlin,Journal of Fluid Mechanics 953(2022)].While the original model with ... We propose a multiple relaxation time entropic realization of a recent twophase flow lattice Boltzmann model[S.A.Hosseini,B.Dorschner,and I.V.Karlin,Journal of Fluid Mechanics 953(2022)].While the original model with a single relaxation time allows us to reach large density ratios,it is limited in terms of stability with respect to non-dimensional viscosity and velocity.Herewe showthat the entropic multiple relaxation time model extends the stability limits of the model significantly,which allows us to reach larger Reynolds numbers for a given grid resolution.The thermodynamic properties of the solver,using the Peng-Robinson equation of state,are studied first using simple configurations.Co-existence densities and temperature scaling of both the interface thickness and the surface tension are shown to agree well with theory.The model is then used to simulate the impact of a drop onto a thin liquid film with density and viscosity ratios matching those of water and air both in two and three dimensions.The results are in very good agreement with theoretically predicted scaling laws and experimental data. 展开更多
关键词 Lattice Boltzmann method two-phase flows entropic multiple relaxation time
原文传递
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
15
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid Non-uniform fracture conductivity two-phase flow Pressure transient analysis
下载PDF
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
16
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
下载PDF
Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells
17
作者 Yongwei Duan Zhaopeng Zhu +2 位作者 Hui He Gaoliang Xuan Xuemeng Yu 《Fluid Dynamics & Materials Processing》 EI 2024年第2期349-364,共16页
The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework... The gas-water two-phaseflow occurring as a result of fracturingfluidflowback phenomena is known to impact significantly the productivity of shale gas well.In this work,this two-phaseflow has been simulated in the framework of a hybrid approach partially relying on the embedded discrete fracture model(EDFM).This model assumes the region outside the stimulated reservoir volume(SRV)as a single-medium while the SRV region itself is described using a double-medium strategy which can account for thefluid exchange between the matrix and the micro-fractures.The shale gas adsorption,desorption,diffusion,gas slippage effect,fracture stress sensitivity,and capillary imbibition have been considered.The shale gas production,pore pressure distribution and water saturation distribution in the reservoir have been simulated.The influences of hydraulic fracture geometry and nonorthogonal hydraulic fractures on gas production have been determined and discussed accordingly.The simulation results show that the daily gas production has an upward and downward trend due to the presence of a large amount of fracturingfluid in the reservoir around the hydraulic fracture.The smaller the angle between the hydraulic fracture and the wellbore,the faster the daily production of shale gas wells decreases,and the lower the cumulative production.Nonplanar fractures can increase the control volume of hydraulic fractures and improve the production of shale gas wells. 展开更多
关键词 Shale gas fracturingfluid backflow the stimulated reservoir volume gas-water two-phase production
下载PDF
Numerical modeling and parametric sensitivity analysis of heat transfer and two-phase oil and water flow characteristics in horizontal and inclined flowlines using OpenFOAM 被引量:1
18
作者 Nsidibe Sunday Abdelhakim Settar +1 位作者 Khaled Chetehouna Nicolas Gascoin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1183-1199,共17页
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ... Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation. 展开更多
关键词 flow assurance flow pattern Heat transfer flowlines two-phase flow Global sensitivity analysis
下载PDF
Experimental and numerical analysis of compressible two-phase flows in a shock tube
19
作者 J.Bruce Ralphin Rose S.Dhanalakshmi G.R.Jinu 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2015年第3期35-53,共19页
The comparative study on seven equation models with two different six equations modelfor compressible two-phase flow analysis is proposed. The seven equations model isderived for compressible two-phase flow that is in... The comparative study on seven equation models with two different six equations modelfor compressible two-phase flow analysis is proposed. The seven equations model isderived for compressible two-phase flow that is in the nonconservation form. In thepresent work, two different six equations model are derived for two pressures, two velocities and single temperature with the derivation of the equation of state. The closingequation for one of the six equations model is energy conservation equation while anotherone is closed by entropy balance equation. The partial differential form of governingequations is hyperbolic and written in the conservative form. At this point, the set ofgoverning equations are derived based on the principle of extended thermodynamics.The method of solving single temperature from both six equation models are simple anddirect solution can be obtained. Numerical simulation has been tried using one of the sixequation models for air–water shock tube problems. Explicit fourth order Runge–Kuttascheme is used with Finite Volume Shock Capturing method for solving the governingequations numerically. The pressure, velocity and volume fraction variations are captured along the shock tube length through flow solver. Experimental work is carried outto magnify the initial stage of liquid injection into a gas. The outcome of six equationsmodel for compressible two-phase flow has revealed the multi-phase flow characteristicsthat are similar to the actual conditions. 展开更多
关键词 two-phase flows shock tubes Runge–Kutta scheme six equation models entropy balance
原文传递
Simulation of Compressible Two-Phase Flows Using a Void Ratio Transport Equation
20
作者 Eric Goncalves Dia Zeidan 《Communications in Computational Physics》 SCIE 2018年第6期167-203,共37页
A compressible and multiphase flows solver has been developed for the study of liquid/gas flows involving shock waves and strong expansion waves leading to cavitation.This solver has a structure similar to those of th... A compressible and multiphase flows solver has been developed for the study of liquid/gas flows involving shock waves and strong expansion waves leading to cavitation.This solver has a structure similar to those of the one-fluid Euler solvers,differing from them by the presence of a void ratio transport-equation.The model and the system of equations to be simulated are presented.Results are displayed for shock and expansion tube problems,shock-bubble interaction and underwater explosion.Close agreement with reference solutions,obtained from explicit finite volume approaches,is demonstrated.Different numerical methods are additionally displayed to provide comparable and improved computational efficiency to the model and the system of equations.The overall procedure is therefore very well suited for use in general two-phase fluid flow simulations. 展开更多
关键词 Compressible two-phase flows CAVITATION homogeneous model shock and expansion waves inviscid simulation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部