Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Var...Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.展开更多
Environmentally friendly nature of CO_(2),associated with its safety and high efficiency,has made it a widely used working fluid in heat exchangers.Since CO_(2)has strange thermophysical features,specific models are r...Environmentally friendly nature of CO_(2),associated with its safety and high efficiency,has made it a widely used working fluid in heat exchangers.Since CO_(2)has strange thermophysical features,specific models are required to estimate its two-phase characteristics,particularly frictional pressure drop(FPD).Herein,a widespread dataset,comprising 1195 experimental samples for two-phase FPD of CO_(2)was adopted from 10 sources to fulfill this requirement.The literature correlations failed to provide satisfactory precisions and exhibited the average absolute relative errors(AAREs)between 29.29% and 67.69% from the analyzed data.By inspiring the theoretical method of Lockhart and Martinelli,three intelligent FPD models were presented,among which the Gaussian process regression approach surpassed the others with AARE and R^(2)values of 5.48% and 98.80%,respectively in the test stage.A novel simple correlation was also derived based on the least square fitting method,which yielded opportune predictions with AARE of 19.76% for all data.The truthfulness of the newly proposed models was assessed through a variety of statistical and visual analyses,and the results affirmed their high reliability over a broad range of conditions,channel sizes and flow patterns.Furthermore,the novel models performed favorably in describing the physical attitudes corresponding to two-phase FPD of CO_(2).Eventually,the importance of operating factors in controlling the FPD was discussed through a sensitivity analysis.展开更多
To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled a...To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled as a Newtonian fluid. The interaction between solid and liquid phases, which plays a major role in debris flow movement, is assumed to consist of drag and buoyancy forces. The applicability of drag force formulas is discussed. Considering the complex interaction between debris flow and the bed surface, a combined friction boundary condition is imposed on the bottom, and this is also discussed. To solve the complex model equations, a numerical method with second-order accuracy based on the finite volume method is proposed. Several numerical experiments are performed to verify the feasibilities of model and numerical schemes. Numerical results demonstrate that different solid volume fractions substantially affect debris flow movement.展开更多
An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are tre...An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are treated as bilat- eral constraints by neglecting the impact between sliders and guides. Firstly, the normal forces acting on sliders, the driv- ing constraint forces (or moments) and the constraint forces of smooth revolute joints are all described by complementary conditions. The frictional contacts are characterized by a set- valued force law of Coulomb's dry friction. Combined with the theory of the horizontal linear complementarity problem (HLCP), an event-driven scheme is used to detect the transi- tions of the contact situation between sliders and guides, and the stick-slip transitions of sliders, respectively. And then, all constraint forces in the system can be computed easily. Secondly, the dynamic equations of multibody systems are written at the acceleration-force level by the Lagrange multiplier technique, and the Baumgarte stabilization method is used to reduce the constraint drift. Finally, a numerical example is given to show some non-smooth dynamical behaviors of the studied system. The obtained results validate the feasibility of algorithm and the effect of constraint stabilization.展开更多
There exist three types of nonlinear problems in large deformation processes of deep softrock engineering, i.e., nonlin- earity caused by material, geometrical and contact boundary. In this paper, the numerical method...There exist three types of nonlinear problems in large deformation processes of deep softrock engineering, i.e., nonlin- earity caused by material, geometrical and contact boundary. In this paper, the numerical method to tackle the nonlinear eontact and large deformation problem in A Software on Large Deformation Analysis for Soft Rock Engineering at Great Depth was presented. In the software, based on Lagrange multiplier method and Coulomb friction law, kinematic constraints on contact boundaries were introduced in functional function, and the finite element equations was established for two incremental large deformation analyses models, polar decomposition model and additive decomposition model. For every incremental loading step, by searching for the contact points in the potential contact interfaces (the excavation boundaries), the Lagrange multipliers, i.e., contact forces are cal- culated iteratively by Gauss-Seidel method, and justified through satisfy the inequalities of static constraint on contact boundaries. With the software, large deformation and frictional contact of a transport roadway were analyzed numerically by the two models. The numerical examples demonstrated the efficiency of the method used in the software.展开更多
This study explains the relationship between friction coefficient and pressure change at a range of Reynolds (21,056 - 28,574) and (0 - 1.4) solid loading ratio of two-phase flow (gas-solid) inside a circular copper p...This study explains the relationship between friction coefficient and pressure change at a range of Reynolds (21,056 - 28,574) and (0 - 1.4) solid loading ratio of two-phase flow (gas-solid) inside a circular copper pipe by using laboratory apparatus and solving the equations mathematically. An experimentally relationship of friction coefficient and pressure change with Reynolds number and flow velocity obtained also the relationship between the Solid loading ratio with friction coefficient and pressure change has been done for a Limit range of Reynolds number. It was noticed that the increase in friction coefficient and pressure change for two-phase flow was occurred when solid loading ratio increased. Also the relationship between pressure change and Reynolds number was direct proportion while the relationship between friction coefficient and Reynolds Number was inversely related.展开更多
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
基金supported by the Iran National Science Foundation(Grant 96006257)。
文摘Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.
基金funded by the National Foreign Expert Project(G2022178023L)。
文摘Environmentally friendly nature of CO_(2),associated with its safety and high efficiency,has made it a widely used working fluid in heat exchangers.Since CO_(2)has strange thermophysical features,specific models are required to estimate its two-phase characteristics,particularly frictional pressure drop(FPD).Herein,a widespread dataset,comprising 1195 experimental samples for two-phase FPD of CO_(2)was adopted from 10 sources to fulfill this requirement.The literature correlations failed to provide satisfactory precisions and exhibited the average absolute relative errors(AAREs)between 29.29% and 67.69% from the analyzed data.By inspiring the theoretical method of Lockhart and Martinelli,three intelligent FPD models were presented,among which the Gaussian process regression approach surpassed the others with AARE and R^(2)values of 5.48% and 98.80%,respectively in the test stage.A novel simple correlation was also derived based on the least square fitting method,which yielded opportune predictions with AARE of 19.76% for all data.The truthfulness of the newly proposed models was assessed through a variety of statistical and visual analyses,and the results affirmed their high reliability over a broad range of conditions,channel sizes and flow patterns.Furthermore,the novel models performed favorably in describing the physical attitudes corresponding to two-phase FPD of CO_(2).Eventually,the importance of operating factors in controlling the FPD was discussed through a sensitivity analysis.
基金Financial support from the NSFC-ICIMOD(41661144041)NSFC(Grant No.41772312)+1 种基金Key Research and Development Program(2017SZ0041)Sichuan Province Science and Technology Support Project(2016SZ0067)
文摘To investigate the movement mechanism of debris flow, a two-dimensional, two-phase, depthintegrated model is introduced. The model uses Mohr-Coulomb plasticity for the solid rheology, and the fluid stress is modeled as a Newtonian fluid. The interaction between solid and liquid phases, which plays a major role in debris flow movement, is assumed to consist of drag and buoyancy forces. The applicability of drag force formulas is discussed. Considering the complex interaction between debris flow and the bed surface, a combined friction boundary condition is imposed on the bottom, and this is also discussed. To solve the complex model equations, a numerical method with second-order accuracy based on the finite volume method is proposed. Several numerical experiments are performed to verify the feasibilities of model and numerical schemes. Numerical results demonstrate that different solid volume fractions substantially affect debris flow movement.
基金supported by the National Natural Science Foundation of China(11372018 and 11172019)
文摘An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are treated as bilat- eral constraints by neglecting the impact between sliders and guides. Firstly, the normal forces acting on sliders, the driv- ing constraint forces (or moments) and the constraint forces of smooth revolute joints are all described by complementary conditions. The frictional contacts are characterized by a set- valued force law of Coulomb's dry friction. Combined with the theory of the horizontal linear complementarity problem (HLCP), an event-driven scheme is used to detect the transi- tions of the contact situation between sliders and guides, and the stick-slip transitions of sliders, respectively. And then, all constraint forces in the system can be computed easily. Secondly, the dynamic equations of multibody systems are written at the acceleration-force level by the Lagrange multiplier technique, and the Baumgarte stabilization method is used to reduce the constraint drift. Finally, a numerical example is given to show some non-smooth dynamical behaviors of the studied system. The obtained results validate the feasibility of algorithm and the effect of constraint stabilization.
基金subsidized by special funds for the National Basic Research Program of China (No.2002cb412708)supported by the Opening Funds of the State Key Laboratory of Hydroscience and Engineering of China (No.sklhse-2007-D-02)
文摘There exist three types of nonlinear problems in large deformation processes of deep softrock engineering, i.e., nonlin- earity caused by material, geometrical and contact boundary. In this paper, the numerical method to tackle the nonlinear eontact and large deformation problem in A Software on Large Deformation Analysis for Soft Rock Engineering at Great Depth was presented. In the software, based on Lagrange multiplier method and Coulomb friction law, kinematic constraints on contact boundaries were introduced in functional function, and the finite element equations was established for two incremental large deformation analyses models, polar decomposition model and additive decomposition model. For every incremental loading step, by searching for the contact points in the potential contact interfaces (the excavation boundaries), the Lagrange multipliers, i.e., contact forces are cal- culated iteratively by Gauss-Seidel method, and justified through satisfy the inequalities of static constraint on contact boundaries. With the software, large deformation and frictional contact of a transport roadway were analyzed numerically by the two models. The numerical examples demonstrated the efficiency of the method used in the software.
文摘This study explains the relationship between friction coefficient and pressure change at a range of Reynolds (21,056 - 28,574) and (0 - 1.4) solid loading ratio of two-phase flow (gas-solid) inside a circular copper pipe by using laboratory apparatus and solving the equations mathematically. An experimentally relationship of friction coefficient and pressure change with Reynolds number and flow velocity obtained also the relationship between the Solid loading ratio with friction coefficient and pressure change has been done for a Limit range of Reynolds number. It was noticed that the increase in friction coefficient and pressure change for two-phase flow was occurred when solid loading ratio increased. Also the relationship between pressure change and Reynolds number was direct proportion while the relationship between friction coefficient and Reynolds Number was inversely related.