期刊文献+
共找到21,124篇文章
< 1 2 250 >
每页显示 20 50 100
Progressive fragmentation of granular assemblies within rockslides: Insights from discrete-continuous numerical modeling
1
作者 JIANG Hui ZHOU Yuande +2 位作者 WANG Jinting DU Xiuli HUANG Hailong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1174-1189,共16页
Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive... Rock fragmentation plays a critical role in rock avalanches,yet conventional approaches such as classical granular flow models or the bonded particle model have limitations in accurately characterizing the progressive disintegration and kinematics of multi-deformable rock blocks during rockslides.The present study proposes a discrete-continuous numerical model,based on a cohesive zone model,to explicitly incorporate the progressive fragmentation and intricate interparticle interactions inherent in rockslides.Breakable rock granular assemblies are released along an inclined plane and flow onto a horizontal plane.The numerical scenarios are established to incorporate variations in slope angle,initial height,friction coefficient,and particle number.The evolutions of fragmentation,kinematic,runout and depositional characteristics are quantitatively analyzed and compared with experimental and field data.A positive linear relationship between the equivalent friction coefficient and the apparent friction coefficient is identified.In general,the granular mass predominantly exhibits characteristics of a dense granular flow,with the Savage number exhibiting a decreasing trend as the volume of mass increases.The process of particle breakage gradually occurs in a bottom-up manner,leading to a significant increase in the angular velocities of the rock blocks with increasing depth.The simulation results reproduce the field observations of inverse grading and source stratigraphy preservation in the deposit.We propose a disintegration index that incorporates factors such as drop height,rock mass volume,and rock strength.Our findings demonstrate a consistent linear relationship between this index and the fragmentation degree in all tested scenarios. 展开更多
关键词 Rock fragmentation ROCKSLIDE numerical modelling Discrete-continuous modelling RUNOUT Cohesive zone model
下载PDF
Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models
2
作者 Xiaoli Su Diyuan Li +3 位作者 Junjie Zhao Mimi Wang Xing Su Aohui Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1512-1524,共13页
This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the... This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation. 展开更多
关键词 MICROWAVE numerical modeling microcracking phase change GRANITE
下载PDF
A Hybrid SIR-Fuzzy Model for Epidemic Dynamics:A Numerical Study
3
作者 Muhammad Shoaib Arif Kamaleldin Abodayeh Yasir Nawaz 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3417-3434,共18页
This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious... This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious-Recovered(SIR)modelwith fuzzy logic,ourmethod effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters.The main aim of this research is to provide a model for disease transmission using fuzzy theory,which can successfully address uncertainty in mathematical modeling.Our main emphasis is on the imprecise transmission rate parameter,utilizing a three-part description of its membership level.This enhances the representation of disease processes with greater complexity and tackles the difficulties related to quantifying uncertainty in mathematical models.We investigate equilibrium points for three separate scenarios and perform a comprehensive sensitivity analysis,providing insight into the complex correlation betweenmodel parameters and epidemic results.In order to facilitate a quantitative analysis of the fuzzy model,we propose the implementation of a resilient numerical scheme.The convergence study of the scheme demonstrates its trustworthiness,providing a conditionally positive solution,which represents a significant improvement compared to current forward Euler schemes.The numerical findings demonstrate themodel’s effectiveness in accurately representing the dynamics of disease transmission.Significantly,when the mortality coefficient rises,both the susceptible and infected populations decrease,highlighting the model’s sensitivity to important epidemiological factors.Moreover,there is a direct relationship between higher Holling type rate values and a decrease in the number of individuals who are infected,as well as an increase in the number of susceptible individuals.This correlation offers a significant understanding of how many elements affect the consequences of an epidemic.Our objective is to enhance decision-making in public health by providing a thorough quantitative analysis of the Hybrid SIR-Fuzzy Model.Our approach not only tackles the existing constraints in disease modeling,but also paves the way for additional investigation,providing a vital instrument for researchers and policymakers alike. 展开更多
关键词 Fuzzy-based model sensitivity equilibriumpoints proposed numerical scheme convergence and stability analysis
下载PDF
Numerical analysis of high‑speed railway slab tracks using calibrated and validated 3D time‑domain modelling
4
作者 A.F.Esen O.Laghrouche +4 位作者 P.K.Woodward D.Medina‑Pineda Q.Corbisez J.Y.Shih D.P.Connolly 《Railway Engineering Science》 EI 2024年第1期36-58,共23页
Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a ... Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds. 展开更多
关键词 High-speed railways Slab track New ballastless track Ballasted track Critical speeds Finite element modelling Calibration of numerical models
下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
5
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load Explosion resistance performance model test POLYUREA Concrete box girder numerical simulation
下载PDF
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling
6
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves Underground tunnels Vulnerability functions Brittle damage FLAC3D numerical modeling
下载PDF
A typhoon-induced storm surge numerical model with GPU acceleration based on an unstructured spherical centroidal Voronoi tessellation grid
7
作者 Yuanyong Gao Fujiang Yu +2 位作者 Cifu Fu Jianxi Dong Qiuxing Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期40-47,共8页
Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important me... Storm surge is often the marine disaster that poses the greatest threat to life and property in coastal areas.Accurate and timely issuance of storm surge warnings to take appropriate countermeasures is an important means to reduce storm surge-related losses.Storm surge numerical models are important for storm surge forecasting.To further improve the performance of the storm surge forecast models,we developed a numerical storm surge forecast model based on an unstructured spherical centroidal Voronoi tessellation(SCVT)grid.The model is based on shallow water equations in vector-invariant form,and is discretized by Arakawa C grid.The SCVT grid can not only better describe the coastline information but also avoid rigid transitions,and it has a better global consistency by generating high-resolution grids in the key areas through transition refinement.In addition,the simulation speed of the model is accelerated by using the openACC-based GPU acceleration technology to meet the timeliness requirements of operational ensemble forecast.It only takes 37 s to simulate a day in the coastal waters of China.The newly developed storm surge model was applied to simulate typhoon-induced storm surges in the coastal waters of China.The hindcast experiments on the selected representative typhoon-induced storm surge processes indicate that the model can reasonably simulate the distribution characteristics of storm surges.The simulated maximum storm surges and their occurrence times are consistent with the observed data at the representative tide gauge stations,and the mean absolute errors are 3.5 cm and 0.6 h respectively,showing high accuracy and application prospects. 展开更多
关键词 typhoon-induced storm surge numerical model GPU acceleration unstructured grid spherical centroidal Voronoi tessellation(SCVT)
下载PDF
Numerical Models and Methods of Atmospheric Parameters Originating in the Formation of the Earth’s Climatic Cycle
8
作者 Wend Dolean Arsène Ilboudo Kassoum Yamba +1 位作者 Windé Nongué Daniel Koumbem Issaka Ouédraogo 《Atmospheric and Climate Sciences》 2024年第2期277-286,共10页
Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model o... Atmospheric models are physical equations based on the ideal gas law. Applied to the atmosphere, this law yields equations for water, vapor (gas), ice, air, humidity, dryness, fire, and heat, thus defining the model of key atmospheric parameters. The distribution of these parameters across the entire planet Earth is the origin of the formation of the climatic cycle, which is a normal climatic variation. To do this, the Earth is divided into eight (8) parts according to the number of key parameters to be defined in a physical representation of the model. Following this distribution, numerical models calculate the constants for the formation of water, vapor, ice, dryness, thermal energy (fire), heat, air, and humidity. These models vary in complexity depending on the indirect trigonometric direction and simplicity in the sum of neighboring models. Note that the constants obtained from the equations yield 275.156˚K (2.006˚C) for water, 273.1596˚K (0.00963˚C) for vapor, 273.1633˚K (0.0133˚C) for ice, 0.00365 in/s for atmospheric dryness, 1.996 in<sup>2</sup>/s for humidity, 2.993 in<sup>2</sup>/s for air, 1 J for thermal energy of fire, and 0.9963 J for heat. In summary, this study aims to define the main parameters and natural phenomena contributing to the modification of planetary climate. . 展开更多
关键词 Atmospheric Parameter 1 Climatic Cycle 2 numerical models 3
下载PDF
Numerical Simulation on Gas-Solid Two-Phase Turbulent Flow in FCC Riser Reactors(Ⅰ) Turbulent Gas-Solid Flow-Reaction Model 被引量:3
9
作者 高金森 徐春明 +2 位作者 杨光华 郭印诚 林文漪 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第1期16-24,共9页
Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,... Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model. 展开更多
关键词 RISER REACTOR TURBULENT FLOW GAS-SOLID FLOW flow-reaction model numerical algorithm
下载PDF
NUMERICAL MODELING OF 3-D TURBULENT TWO-PHASE FLOW AND COAL COMBUSTION IN A PULVERIZED-COAL COMBUSTOR 被引量:1
10
作者 周彪 吴承康 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第3期193-202,共10页
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent ... In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization. 展开更多
关键词 numerical simulation pulverized-coal combustor two-phase flow
下载PDF
Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel 被引量:2
11
作者 M.M.RASHIDI A.HOSSEINI +2 位作者 I.POP S.KUMAR N.FREIDOONIMEHR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第7期831-848,共18页
The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) p... The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel. 展开更多
关键词 NANOFLUID two-phase model wavy channel semi implicit method for pres-sure linked equation (SIMPLE) method
下载PDF
A Numerical Sirnulation of Gas-Particle Two-Phase Flow in a Suspension Bed Using DifFusion Flux Model 被引量:1
12
作者 尚智 杨瑞昌 +2 位作者 FUKUDA Kenji 钟勇 巨泽建 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第5期497-503,共7页
A mathematical model of two-dimensional turbulent gas-particle two-phase flow based on the modified diffusion flux model (DFM) and a numerical simulation method to analyze the gas-particle flow structures are develope... A mathematical model of two-dimensional turbulent gas-particle two-phase flow based on the modified diffusion flux model (DFM) and a numerical simulation method to analyze the gas-particle flow structures are developed. The modified diffusion flux model, in which the acceleration due to various forces is taken into account for the calculation of the diffusion velocity of particles, is applicable to the analysis of multi-dimensional gas-particle two-phase turbulent flow. In order to verify its accuracy and efficiency, the numerical simulation by DFM is compared with experimental studies and the prediction by κ-ε-κp two-fluid model, which shows a reasonable agreement. It is confirmed that the modified diffusion flux model is suitable for simulating the multi-dimensional gas-particle two-phase flow. 展开更多
关键词 扩散流动模型 分析 悬浮床 气固两相流 流动特性 数值模拟 湍流
下载PDF
Numerical analysis of geosynthetic-reinforced embankment performance under moving loads
13
作者 Xuanming Ding Jinqiao Zhao +1 位作者 Qiang Ou Jianfei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期682-696,共15页
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ... The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment. 展开更多
关键词 Geosynthetic-reinforced layer numerical model Moving load EMBANKMENT DEFORMATION Stress
下载PDF
Understanding the spatial interaction of ultrasounds based on three-dimensional dual-frequency ultrasonic field numerical simulation
14
作者 Zhao-yang Yin Qi-chi Le +3 位作者 Yan-chao Jiang Da-zhi Zhao Qi-yu Liao Qi Zou 《China Foundry》 SCIE EI CAS CSCD 2024年第1期29-43,共15页
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the u... A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt.The effects of insertion depth and tip shape of the ultrasonic rods,input pressures and their ratio on the acoustic field distribution were discussed in detail.Additionally,the spacing,angle,and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds.As a result,various acoustic pressure distributions and cavitation regions are obtained.The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7%and 31.7%,respectively,compared to the plate and conical rods.Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern.The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region,and the best cavitation effect is obtained at the ratio of 2:1(P15:P20). 展开更多
关键词 dual-frequency ultrasonic numerical model acoustic pressure spatial interaction magnesium alloy
下载PDF
Experimental and numerical investigation on alternatives to sandy gravel
15
作者 V.Denefeld H.Aurich 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期130-141,共12页
The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbe... The NATO agreement STANAG 4569 defines the protection levels for the occupants of logistic and light armored vehicle.The Allied Engineering Publication,AEP-55,Volume 2 document outlines the test conditions for underbelly improvised explosive device(IEDs),which must be buried in water-saturated sandy gravel.The use of sandy gravel has some drawbacks,for instance reproducibility,time consumption,and cost.This paper focuses on the investigation of four alternatives to sandy gravel,which could produce similar specific and cumulative impulses:a concrete pot filled with water,a concrete pot filled with quartz sand,a steel pot without filling and a concrete pot filled with glass spheres(diameter 200μm—300μm)and different water contents.The impulses are measured with a ring technology developed at the Fraunhofer EMI.A numerical soil model based on the work of Marrs,2014 and Fi serov a,2006 and considering the soil moisture was used to simulate the experiments with glass spheres at different water contents,showing much better agreement with the experiments than the classical Laine&Sandvik model,even for high saturation levels.These results can be used to create new test conditions at original scale that are more cost-effective,more reproducible and simpler to manage in comparison to the current tests carried out with STANAG sandy gravel. 展开更多
关键词 Improvised explosive device(IED) Specific impulse Momentum transfer Sandy gravel Glass spheres numerical model Soil moisture
下载PDF
Numerical investigation of hydro-morphodynamic characteristics of a cascading failure of landslide dams
16
作者 ZHONG Qiming CHEN Lingchun +3 位作者 MEI Shengyao SHAN Yibo WU Hao ZHAO Kunpeng 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1868-1885,共18页
A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the t... A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams. 展开更多
关键词 Cascading landslide dams Cascading dam failure process Detailed numerical simulation model Flood amplification effect Parameter sensitivity analyses
下载PDF
Numerical simulation of formation mechanism of unloading joints in granitic pluton
17
作者 JIA Zhenyang LI Gang FENG Fan 《Global Geology》 2024年第1期35-42,共8页
The Beishan pluton in Gansu of China was selected as the simulated model.The simulation results indicate that the formation of unloading joints in granite is mainly influenced by the unloading rate of confin-ing press... The Beishan pluton in Gansu of China was selected as the simulated model.The simulation results indicate that the formation of unloading joints in granite is mainly influenced by the unloading rate of confin-ing pressure.Among the rates tested,the slowest unloading rate 0.025 MPa/s is found to be most conducive to the development of unloading joints.Therefore,a slower unloading rate is favourable for the occurrence of unloading joints.A series of simulations with varying initial depths of uplift ranging from 900 m to 200 m were conducted.The results confirm that when the specimen rises to a depth of 550-500 m,the unloading joints begin to form.The uplift from a depth of 700-500 m,with variations in both vertical and lateral un-loading rates,was simulated.The generation of unloading joints exhibits a negative correlation with vertical unloading and no correlation with lateral unloading,indicating that the unloading joints are mainly controlled by the unloading of vertical pressure.Throughout the simulation process,the vertical joints exhibit irregular and unrealistic regularity,suggesting a more complex formation mechanism than that of the unloading joints. 展开更多
关键词 GRANITES ROCKBURST underloading joints numerical modeling
下载PDF
Numerical Analysis on Temperature Distribution in a Single Cell of PEFC Operated at Higher Temperature by1D Heat Transfer Model and 3D Multi-Physics Simulation Model
18
作者 Akira Nishimura Kyohei Toyoda +1 位作者 Daiki Mishima Eric Hu 《Energy and Power Engineering》 CAS 2023年第5期205-227,共23页
This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf... This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction. 展开更多
关键词 PEFC Heat Transfer model Temperature Distribution numerical Simulation High Temperature Operation
下载PDF
Image processing based three-dimensional model reconstruction for cross-platform numerical simulation
19
作者 Yu-cheng Sun Yu-hang Huang +5 位作者 Na Li Xiao Han Ai-long Jiang Jin-wu Kang Ji-wu Wang Hai-liang Yu 《China Foundry》 SCIE CAS CSCD 2023年第2期139-147,共9页
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ... Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study. 展开更多
关键词 cross-platform numerical simulation 3D model reconstruction image processing SLICE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部