Due to the poor heating performance and operating safety in low ambient temperature,traditional Air Source Heat Pump(ASHP)for Electric Vehicles(EVs)has many limits in cold region,which can be solved by the ASHP with r...Due to the poor heating performance and operating safety in low ambient temperature,traditional Air Source Heat Pump(ASHP)for Electric Vehicles(EVs)has many limits in cold region,which can be solved by the ASHP with refrigerant injection.During the start-up stage of EV in winter,the inlet air temperature of the in-car condenser is the same as the ambient temperature.At this situation,the performance and control strategy of the heat pump require special attention.In the present study,a series of experiments were carried out on the heating performance of the Refrigerant Injection Heat Pump(RIHP)system in start-up stage of EV,at the ambient temperature from–20℃ to–5℃.The effects of compressor speed and injected refrigerant state on the heating performance of the system were discussed in depth.According to the results,the control strategies during start-up stage have been discussed in the end of the article.The study provides a practical control strategy for the RIHP system during the start-up stage of electric vehicles,helping to efficiently operate electric vehicles in cold regions.展开更多
This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamlinemodel,The mathematical model of the verical two-dimensio...This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamlinemodel,The mathematical model of the verical two-dimensional flow or oil-water for a horizontal well in a medium with double-porosity is established ,and whose accuratesolutions are obtained by using the characteristic method .The saturation distributionsin the fractured system and the matrix system as well as the formula of the time of water free production are presented .All these results provide a theoretical basis and a computing method for oil displacement by edge water from naturally fracturedreservirs.展开更多
An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The...An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The simulation model is built with the framework of two-phase fluid network,where the compressor is separated as two compressors and the economizer is treated as two heat exchangers in the injection path and the main refrigerant path.With the validated simulation model,the heating performance is analyzed,and the results show that the coefficient of performance(COP)of ASHP with refrigerant injection is higher than 1.4 and the discharge temperature is less than 100℃ when the outdoor temperature is-20℃.The above performance ensures that the air conditioning system and EVs can operate normally with high efficiency even in the cold winter,which is much helpful for the practicability of EVs.展开更多
A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic s...A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.展开更多
The flow boiling heat transfer characteristics of refrigerant R134 a flowing inside two different kinds of minichannels are investigated. One channel is multi-port extruded with the hydraulic diameter of 0.63 mm,and t...The flow boiling heat transfer characteristics of refrigerant R134 a flowing inside two different kinds of minichannels are investigated. One channel is multi-port extruded with the hydraulic diameter of 0.63 mm,and the other one is rectangular with offset fins and a hydraulic diameter of 1.28 mm. The experiments are performed with a mass flow rate between 68 and 630 kg/(m^2·s),a heat flux between 9 and 64 kW/m^2,and a saturation pressure between 0.24 and 0.63 MPa,under the constant heat flux heating mode. It is found that the effect of mass flow rate on boiling heat transfer is related to heat flux,and that with the increase of heat flux,the effect can only be efficient in higher vapor quality region. The effects of heat flux and saturation pressure on boiling heat transfer are related to a threshold vapor quality,and the value will gradually decrease with the increase of heat flux or saturation pressure. Based on these analyses,a new correlation is proposed to predict the boiling heat transfer coefficient of refrigerant R134 a in the mini-channels under the experimental conditions.展开更多
A homogeneous theoretical model is developed to predict the performance of R22 and R290 in adiabatic capillary tubes. The model is based on conservation equations of mass, momentum and energy. Metastable both liquid a...A homogeneous theoretical model is developed to predict the performance of R22 and R290 in adiabatic capillary tubes. The model is based on conservation equations of mass, momentum and energy. Metastable both liquid and two-phase flow regions are considered in the model. In metastable two-phase region, superheated liquid is introduced into the metastable mixture viscosity and two methods are presented to evaluate it. The model is validated by comparing the predicted pressure and temperature profile and mass flow rate with several investigators′ experimental data of R22 and one of its alternatives R290 reported in literature. All of the predicted mass flow rates are within ±800 of measured values. Comparisons are also made between the present model and other investigators′ models or sizing correlation. The model can be used for design or simulation calculation of adiabatic capillary tubes.展开更多
A heat exchanger that arranges flat tubes horizontally has a vertical header that distributes the refrigerant to each tube. When the heat exchanger works as an evaporator, differences in flow conditions at each branch...A heat exchanger that arranges flat tubes horizontally has a vertical header that distributes the refrigerant to each tube. When the heat exchanger works as an evaporator, differences in flow conditions at each branch, such as the ratio and distribution of vapor and liquid, due to the differences in densities and momentums of vapor and liquid in the two-phase flow make equal distribution difficult. This paper describes the distribution characteristics of a four-branch header that has a rectangular cross-section without the internal protrusion of flat tubes in the case of the inflow of the refrigerant R32 from the bottom of the header by using an equipment that can estimate the distribution ratio of the liquid and vapor phase to each branch. This paper also discusses the distribution characteristics on the basis of the flow visualization in the header. The flow visualization shows that a liquid level that contains vapor phase exists in the header and affects the distribution greatly.展开更多
A single cylinder rotary compressor was applied in the refrigerant injection air-source heat pump to improve the heating performance in cold regions. In this study, the performance of an R410 A single cylinder rotary ...A single cylinder rotary compressor was applied in the refrigerant injection air-source heat pump to improve the heating performance in cold regions. In this study, the performance of an R410 A single cylinder rotary compressor vapor injection(SCRCVI) system was measured and analyzed by varying the compressor frequency f and injection pressure Pi njat the ambient temperature To d=–10°C.The experimental results indicated that an optimum injection pressure to gain the maximum COP_h (coefficient of performance) existed in the SCRCVI cycle. However, the maximum COP_h of the SCRCVI system decreased as the increase of the frequency, and the maximum COPhwas even lower than that of the CSVC system at high compressor frequency. Therefore, in view of the energy saving and emission reduction, the SCRCVI system should be switched to single stage compression system when the heating capacity demand could be satisfied at high compressor frequency f. Compared to the conventional single-stage vapor compression(CSVC) system, refrigerant injection could enhance the heating capacities and COP_h by 28.2% and 7.91%, respectively. The average total mass flow rate of the SCRCVI system was 24.68% higher than that of the CSVC system. As the SCRCVI system worked at the optimum injection pressure, the variation trends of the different system parameters were investigated in detail. These trends were reliably used to optimize the refrigerant injection system design and the control strategy. The parameter of(P_(inj)–P_s) could be adopted as the signals to control the opening of the upper stage electronic expansion valve EEV1.展开更多
In this paper, by using high-speed camera, CCD camera, signal and graph acquisition system, and other experimental instruments, investigation on liquid-gas two-phase flow in diesel fuel injection system and their effe...In this paper, by using high-speed camera, CCD camera, signal and graph acquisition system, and other experimental instruments, investigation on liquid-gas two-phase flow in diesel fuel injection system and their effect on engine performances were made. Emerging and bursting of cavitation in the cavity above pump delivery valve, in injection pipe, and in fuel trough of injector of the fuel injection system were observed and mechanism of cavitation were discussed. Effects of liquid-gas two-phase flow on propagation velocity of pressure wave of the system and on irregular injection were analyzed. Two types of cavitation, long Living time cavitation and short living time cavitation, in the cavity above pump delivery valve of diesel fuel injection system were observed.展开更多
基金support by the National Natural Science Foundation of China(No.51576203)。
文摘Due to the poor heating performance and operating safety in low ambient temperature,traditional Air Source Heat Pump(ASHP)for Electric Vehicles(EVs)has many limits in cold region,which can be solved by the ASHP with refrigerant injection.During the start-up stage of EV in winter,the inlet air temperature of the in-car condenser is the same as the ambient temperature.At this situation,the performance and control strategy of the heat pump require special attention.In the present study,a series of experiments were carried out on the heating performance of the Refrigerant Injection Heat Pump(RIHP)system in start-up stage of EV,at the ambient temperature from–20℃ to–5℃.The effects of compressor speed and injected refrigerant state on the heating performance of the system were discussed in depth.According to the results,the control strategies during start-up stage have been discussed in the end of the article.The study provides a practical control strategy for the RIHP system during the start-up stage of electric vehicles,helping to efficiently operate electric vehicles in cold regions.
文摘This paper examines the two-phase flow for a horizontal well penetrating a naturally fractured reservoir with edge water injection by means of a fixed streamlinemodel,The mathematical model of the verical two-dimensional flow or oil-water for a horizontal well in a medium with double-porosity is established ,and whose accuratesolutions are obtained by using the characteristic method .The saturation distributionsin the fractured system and the matrix system as well as the formula of the time of water free production are presented .All these results provide a theoretical basis and a computing method for oil displacement by edge water from naturally fracturedreservirs.
基金supported by the National Key Research and Development Program of China(No.2016YFB0601602)National Natural Science Foundation of China(No.51676199)
文摘An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The simulation model is built with the framework of two-phase fluid network,where the compressor is separated as two compressors and the economizer is treated as two heat exchangers in the injection path and the main refrigerant path.With the validated simulation model,the heating performance is analyzed,and the results show that the coefficient of performance(COP)of ASHP with refrigerant injection is higher than 1.4 and the discharge temperature is less than 100℃ when the outdoor temperature is-20℃.The above performance ensures that the air conditioning system and EVs can operate normally with high efficiency even in the cold winter,which is much helpful for the practicability of EVs.
基金Supported by the National Natural Science Foundation of China(10871159) the National Basic Research Program of China(2005CB321704)
文摘A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.
文摘The flow boiling heat transfer characteristics of refrigerant R134 a flowing inside two different kinds of minichannels are investigated. One channel is multi-port extruded with the hydraulic diameter of 0.63 mm,and the other one is rectangular with offset fins and a hydraulic diameter of 1.28 mm. The experiments are performed with a mass flow rate between 68 and 630 kg/(m^2·s),a heat flux between 9 and 64 kW/m^2,and a saturation pressure between 0.24 and 0.63 MPa,under the constant heat flux heating mode. It is found that the effect of mass flow rate on boiling heat transfer is related to heat flux,and that with the increase of heat flux,the effect can only be efficient in higher vapor quality region. The effects of heat flux and saturation pressure on boiling heat transfer are related to a threshold vapor quality,and the value will gradually decrease with the increase of heat flux or saturation pressure. Based on these analyses,a new correlation is proposed to predict the boiling heat transfer coefficient of refrigerant R134 a in the mini-channels under the experimental conditions.
文摘A homogeneous theoretical model is developed to predict the performance of R22 and R290 in adiabatic capillary tubes. The model is based on conservation equations of mass, momentum and energy. Metastable both liquid and two-phase flow regions are considered in the model. In metastable two-phase region, superheated liquid is introduced into the metastable mixture viscosity and two methods are presented to evaluate it. The model is validated by comparing the predicted pressure and temperature profile and mass flow rate with several investigators′ experimental data of R22 and one of its alternatives R290 reported in literature. All of the predicted mass flow rates are within ±800 of measured values. Comparisons are also made between the present model and other investigators′ models or sizing correlation. The model can be used for design or simulation calculation of adiabatic capillary tubes.
文摘A heat exchanger that arranges flat tubes horizontally has a vertical header that distributes the refrigerant to each tube. When the heat exchanger works as an evaporator, differences in flow conditions at each branch, such as the ratio and distribution of vapor and liquid, due to the differences in densities and momentums of vapor and liquid in the two-phase flow make equal distribution difficult. This paper describes the distribution characteristics of a four-branch header that has a rectangular cross-section without the internal protrusion of flat tubes in the case of the inflow of the refrigerant R32 from the bottom of the header by using an equipment that can estimate the distribution ratio of the liquid and vapor phase to each branch. This paper also discusses the distribution characteristics on the basis of the flow visualization in the header. The flow visualization shows that a liquid level that contains vapor phase exists in the header and affects the distribution greatly.
基金supported by the South Wisdom Valley Innovative Research Team Program(serial number:Shunde District of Foshan City Government Office [2014] No.365)the 2017 Guangzhou Collaborative Innovation Major Projects(Grant Nos.201604016048 and 201604016069)
文摘A single cylinder rotary compressor was applied in the refrigerant injection air-source heat pump to improve the heating performance in cold regions. In this study, the performance of an R410 A single cylinder rotary compressor vapor injection(SCRCVI) system was measured and analyzed by varying the compressor frequency f and injection pressure Pi njat the ambient temperature To d=–10°C.The experimental results indicated that an optimum injection pressure to gain the maximum COP_h (coefficient of performance) existed in the SCRCVI cycle. However, the maximum COP_h of the SCRCVI system decreased as the increase of the frequency, and the maximum COPhwas even lower than that of the CSVC system at high compressor frequency. Therefore, in view of the energy saving and emission reduction, the SCRCVI system should be switched to single stage compression system when the heating capacity demand could be satisfied at high compressor frequency f. Compared to the conventional single-stage vapor compression(CSVC) system, refrigerant injection could enhance the heating capacities and COP_h by 28.2% and 7.91%, respectively. The average total mass flow rate of the SCRCVI system was 24.68% higher than that of the CSVC system. As the SCRCVI system worked at the optimum injection pressure, the variation trends of the different system parameters were investigated in detail. These trends were reliably used to optimize the refrigerant injection system design and the control strategy. The parameter of(P_(inj)–P_s) could be adopted as the signals to control the opening of the upper stage electronic expansion valve EEV1.
基金99' Fotmtw Ofoutstanto beg Schoto ot ha bo ot dri(99l8). Key Proec of Foundation of has ofMStry of Nallonal Educatin, ~ect
文摘In this paper, by using high-speed camera, CCD camera, signal and graph acquisition system, and other experimental instruments, investigation on liquid-gas two-phase flow in diesel fuel injection system and their effect on engine performances were made. Emerging and bursting of cavitation in the cavity above pump delivery valve, in injection pipe, and in fuel trough of injector of the fuel injection system were observed and mechanism of cavitation were discussed. Effects of liquid-gas two-phase flow on propagation velocity of pressure wave of the system and on irregular injection were analyzed. Two types of cavitation, long Living time cavitation and short living time cavitation, in the cavity above pump delivery valve of diesel fuel injection system were observed.