The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop...The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C to 13<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 29<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator.展开更多
Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extrem...Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extremely cold region of the Da Xing'anling Mountains.In this study,a series of three-dimensional finite element TPCT embankment models were established based on the ZhanglingMohe highway TPCT test section in Da Xing'anling Mountains,and the thermal characteristics and the cooling effect of the TPCTs were analyzed.The results indicated that the TPCTs installed in the northeastern high-latitude regions is effective in cooling and stabilizing the embankment.The working cycle of the TPCTs is nearly 7 months,and the cooling range of the TPCTs can reach 3 m in this region.However,due to the extremely low temperature,the TPCT generates a large radial gradient in the permafrost layer.Meanwhile,by changing the climate conditions,the same type of TPCT embankment located in the Da Xing'anling Mountains,the Xiao Xing'anling Mountains,and the Qinghai-Tibet Plateau permafrost regions were simulated.Based on the comparison of the climate differences between the Qinghai-Tibet Plateau and Northeast China,the differences in the effectiveness of TPCTs were studied.Finally,the limitations of using existing TPCTs in high-latitude permafrost regions of China were discussed and the potential improvements of the TPCT in cold regions were presented.展开更多
1 INTRODUCTIONClosed thermosyphon has been developed to enhance heat transfer and recover wasteheat in various process industries [1,2].Stimulated by this success,a new type oftwo-phase closed thermosyphon was designe...1 INTRODUCTIONClosed thermosyphon has been developed to enhance heat transfer and recover wasteheat in various process industries [1,2].Stimulated by this success,a new type oftwo-phase closed thermosyphon was designed by inserting respectively two inner tubesinto the thermosyphon,one in the boiling section and the other in the condensing sec-tion.The two-phase flow boiling heat transfer coefficient was calculated successfully onthe basis of Chen’s dual-mechanism [3].A boiling heat transfer model for thetwo-phase closed thermosyphon with an inner tube in the boiling section was pro-展开更多
An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, ...An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.展开更多
Compared with a conventional single section two-phase closed thermosyphon (TPCT) wellbore, a two-section TPCT wellbore has better heat transfer performance, which may improve the temperature distribution of fluid in...Compared with a conventional single section two-phase closed thermosyphon (TPCT) wellbore, a two-section TPCT wellbore has better heat transfer performance, which may improve the temperature distribution of fluid in wellbores, increase the temperature of fluid in wellheads and even more effectively reduce the failure rate of conventional TPCT wellbores. Heat transfer performance of two-section TPCT wellbores is affected by working medium, combination mode and oil flow rate. Different working media are introduced into the upper and lower TPCTs, which may achieve a better match between the working medium and the temperature field in the wellbores. Interdependence exists between the combination mode and the flow rate of the oil, which affects the heat transfer performance of a two-section TPCT wellbore. The experimental results show that a two-section TPCT wellbore, with equal upper and lower TPCTs respectively filled with Freon and methanol, has the best heat transfer performance when the oil flow rate is 200 L/h.展开更多
Heat transfer and hydrodynamics of two phase closed thermosyphon (TPCT) is studied using finite difference method of Stream function and vorticity. The mathematical model is formed for both vapor phase and liquid fi...Heat transfer and hydrodynamics of two phase closed thermosyphon (TPCT) is studied using finite difference method of Stream function and vorticity. The mathematical model is formed for both vapor phase and liquid film in a non-dimensional form. The momentum and energy equations as parabolic equations have been solved by means of the locally one-dimensional scheme of A.A. Samarskii. The Poisson equation for the stream function has been approximated on the basis of the discrete scheme "cross". The obtained system of algebraic equations has been solved by the successive over relaxation method. The effect of the Rayleigh number on the velocity and temperature fields in the domain of interest and on the average Nusselt number at the solid-fluid interfaces is investigated. It was found that increase in the Rayleigh number leads to the increment of both the average Nusselt number and the stream function in the vapor zone.展开更多
Over the years,numerous geotechnical approaches have been implemented to mitigate the adverse effects of climate warming on various infrastructures in the permafrost region of the Qinghai-Tibet Plateau(QTP),such as th...Over the years,numerous geotechnical approaches have been implemented to mitigate the adverse effects of climate warming on various infrastructures in the permafrost region of the Qinghai-Tibet Plateau(QTP),such as the Qinghai-Tibet Highway and Railway,and achieved the expected engineering outcomes.However,little attention has been given to whether the performance of these geotechnical approaches has changed during the ongoing process of climate warming.To investigate the performance variation of one of these geotechnical approaches,which is two-phase closed thermosyphon(TPCT),during sustained climate warming,we conducted a statistical analysis of soil temperature monitoring data in 2003-2020 from eight regular embankments and six TPCT embankments in our permafrost monitoring network.The results indicate that TPCT undeniably has a cooling effect on the permafrost beneath embankments,even rapidly eliminated previously formed taliks beneath embankment.However,further analysis reveals that the performance of TPCT has been weakening during sustained climate warming,which has confirmed by the re-forming of the taliks beneath embankment where they had been previously eliminated.Based on the current understanding,we attributed the weakening of thermosyphon performance to a significant reduction in the air temperature freezing index caused by ongoing climate warming.Through this study,we aimed to draw attention to the evolving performance of geotechnical approaches in permafrost regions amid climate warming,prompting necessary engineering innovations to address this situation and ensure the sustainable development of the permafrost region on the QTP.展开更多
Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid...Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid velocities.The flow rates in the two branches were measured accurately to determine how the two considered phases distribute in the two outlets.The experimental results have shown that when the two outlet pressures are asymmetric,the two-phase flow always tends to flow into the outlet which has a lower pressure.As the inlet liquid velocity increases,however,the two-phase flow gradually tends to split evenly.Compared with the experiment results,the pressure difference between the two outlets can be determined more accurately by means of numerical simulation.The trends of experimental results and simulations are in very good agreement.展开更多
With rapid development of the semiconductor technology, more efficient cooling systems for electronic devices are needed. In this situation, in the present study, a loop thermosyphon type cooling system, which is comp...With rapid development of the semiconductor technology, more efficient cooling systems for electronic devices are needed. In this situation, in the present study, a loop thermosyphon type cooling system, which is composed mainly of a heating block, an evaporator and an air-cooled condenser, is investigated experimentally in order to evaluate the cooling performance. At first, it is examined that the optimum volume filling rate of this cooling system is approximately 40%. Next, four kinds of working fluids, R1234ze(E), R1234ze(Z), R134a and ethanol, are tested using a blasted heat transfer surface of the evaporator. In cases of R1234ze(E), R1234ze(Z), R134a and ethanol, the effective heat flux, at which the heating block surface temperature reaches 70°C, is 116 W/cm2, 106 W/cm2, 104 W/cm2 and 60 W/cm2, respectively. This result indicates that R1234ze(E) is the most suitable for the present cooling system. The minimum boiling thermal resistance of R1234ze(E) is 0.05 (cm2·K)/W around the effective heat flux of 100 W/cm2. Finally, four kinds of heat transfer surfaces of the evaporator, smooth, blasted, copper-plated and finned surfaces, are tested using R1234ze(E) as working fluid. The boiling thermal resistance of the blasted surface is the smallest among tested heat transfer surfaces up to 116 W/cm2 in effective heat flux. However, it increases drastically due to the appearance of dry-patch if the effective heat flux exceeds 116 W/cm2. On the other hand, in cases of copper-plated and finned surfaces, the dry-patch does not appear up to 150 W/cm2 in effective heat flux, and the boiling thermal resistances of those surfaces keep 0.1 (cm2·K)/W.展开更多
To better analyzing the temperature oscillation and the two-phase behavior inside a flat loop heat pipe,visual studies were conducted.Under the 20℃ water cooling and horizontal orientation,the effects of the filling ...To better analyzing the temperature oscillation and the two-phase behavior inside a flat loop heat pipe,visual studies were conducted.Under the 20℃ water cooling and horizontal orientation,the effects of the filling ratio and heat loads on the temperature oscillation were analyzed.Based on the experimental data,the results indicate that owing to the increased system pressure,the temperature oscillation decays as the filling ratio increases from 34%to 58%.Meanwhile,during the startup process,temperature oscillation tends to occur during the boiling and steady stages due to the more violent two-phase behavior,while the temperature curves are smooth during the slow evaporation stage.Moreover,as the heat load increases,the evaporation becomes more intense at the active zone of evaporator,leading to a faster startup process and a higher oscillation frequency.Besides,owing to the synergistic effect of two-phase flow in the compensation chamber caused by heat leak and subcooled liquid backflowing,a“breathing”oscillation behavior of the vapor-liquid interface is observed at the compensation chamber,which further leads to the unstable operation behavior of the loop heat pipe system.展开更多
Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick,...Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.展开更多
Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multipl...Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multiple. This work discusses the cases that multiple loop heat pipes were operated with one condenser at high temperature and the other at low temperature. To avoid the high temperature returning liquid and keep the multiple loop heat pipes work properly, the flow regulator which was made of polyethylene was designed, fabricated and applied in this test. The effect of flow regulator was confirmed and analyzed. In the test that large temperature difference existed between two sinks, it can be found according to the result that the flow regulator worked effectively and prevented the high temperature vapor to enter the inlet of common liquid line, which can keep the evaporators and returning liquid to operate at low temperature. With the increment of heat loads and the temperature difference between two sinks, the pressure difference between two condensers became larger and larger. When the pressure difference was larger than the flow regulator’s capillary force, the flow regulator could not work properly because the high temperature vapor began to flow through the flow regulator. According to the test data, the flow regulator can work properly within the sinks’ temperature 0°C/60°C and the two evaporators’ heat load 30/30 W.展开更多
This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condens...This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condensers in a loop heat pipe in order to adapt to various changes of thermal condition in spacecraft. The PTFE porous media was used as the primary wicks to reduce heat leak from evaporators to compensation chambers. The tests were conducted under an atmospheric condition. In the tests that heat loads are applied to both evaporators, the MLHP was stably operated as with a LHP with a single evaporator and a single condenser. The relation between the sink temperature and the thermal resistance was experimentally evaluated. In the test with the heat load to one evaporator, the heat transfer from the heated evaporator to the unheated evaporator was confirmed. In the heat load switching test, in which the heat load is switched from one evaporator to another evaporator repeatedly, the MLHP could be stably operated. The loop operation with the large temperature difference between the heat sinks was also tested. From this result, the stable operation of the MLHP in the various conditions was demonstrated. It was also found that a flow regulator which prevents the uncondensed vapor from the condensers is required at the inlet of the common liquid line when one condenser has higher temperature and cannot condense the vapor in it.展开更多
The heat transfer perfonmance of a vertical two-phase closed thermosyphon(TPCT)used in a geothermal heat pump was experimentally investigated.The TPCT is a verticalplain steel pipe with inner diameter of 114 mm and bo...The heat transfer perfonmance of a vertical two-phase closed thermosyphon(TPCT)used in a geothermal heat pump was experimentally investigated.The TPCT is a verticalplain steel pipe with inner diameter of 114 mm and bored 368 m deep underground.Carbon dioxide(CO_(2))is used as working fluid.In the TPCT there is no condensation section.CO_(2)is condensed by the evaporator pf the heat pump,flows into the head of the TPCT and nuns down as a falling film along the inner wall of the pipe.For the heat transfer simulation in the TPCT,a quasi-dynamic model in which the mass transfer between the liquid and vapor phases as well as the conduction heat transfer from the surrounding soil towards the pipe is treated dynamically.However the film flow modeling is based on the Nusselt theory of frilm condenssation.The compauison of the experimental data with the numerical simulation is presented and discussed.展开更多
Mechanically pumped two-phase loop(MPTL)which is a prominent two-phase heat transfer technology presents a promising prospect in thermal control for space payload.However,transient behavior of MPTL caused by phase-cha...Mechanically pumped two-phase loop(MPTL)which is a prominent two-phase heat transfer technology presents a promising prospect in thermal control for space payload.However,transient behavior of MPTL caused by phase-change and heat sources load-on/off in simulated space environment is rarely reported.In the present study,one MPTL setup was designed and constructed,and experimentally studied.Particularly,a novel two-phase thermally-controlled accumulator integrated with passive cooling measure and three capillary structures was designed as the temperature-control device.Dynamic behavior of the start-up,temperature control,and temperature adjustment were monitored;meanwhile,thermodynamic behavior within the proposed accumulator,the operating behavior as well as the heat and mass transfer behavior between the main loop and the accumulator were revealed.The results show that the fluid management function of the capillary structures for the novel accumulator is verified.The working point of the MPTL system can be adjusted by changing the temperature control point of the accumulator and it is little influenced by external heat flux and heat sources on/off.Pressure-drop oscillations which are manifested as fluctuations of temperature and pressure can be observed after phase changing due to the compressible volume within the accumulator and the negative-slope portion of the internal pressure.展开更多
文摘The two-phase thermosyphon loop is an efficient solution for space cooling. This paper presents the simulation results of numerical studies on the heat transfer and thermal performance of a two-phase thermosiphon loop for passive air-conditioning of a house. The fluid considered in this study is methanol, which is compatible with copper and is environmentally friendly. These numerical results show that the temperature at the evaporator wall drops from 23<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C to 13<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and increases at the condenser. The solar flux density has a strong influence on the condenser temperature. The mass flow rates and masses at the evaporator and condenser increase with temperature. The variation of evaporating and condensing temperature affects the performance of the system. For a constant evaporating and condensing temperature of 2<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 29<span style="color:#111111;font-family:Roboto, sans-serif;font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C, the COP is 0.77 and 0.84 respectively. With these results, the use of the two-phase thermosyphon loop in air conditioning is possible to obtain a thermal comfort of the occupants acceptable by the standards but with a large exchange surface of the evaporator.
基金the National Natural Science Foundation of China(No.41971076No.42171128)the Heilongjiang Provincial Department of Science and Technology(GA21A501)。
文摘Two-phase closed thermosyphons(TPCTs)are widely used in infrastructure constructions in permafrost regions.Due to different climatic conditions,the effectiveness of TPCT will also be different,especially in the extremely cold region of the Da Xing'anling Mountains.In this study,a series of three-dimensional finite element TPCT embankment models were established based on the ZhanglingMohe highway TPCT test section in Da Xing'anling Mountains,and the thermal characteristics and the cooling effect of the TPCTs were analyzed.The results indicated that the TPCTs installed in the northeastern high-latitude regions is effective in cooling and stabilizing the embankment.The working cycle of the TPCTs is nearly 7 months,and the cooling range of the TPCTs can reach 3 m in this region.However,due to the extremely low temperature,the TPCT generates a large radial gradient in the permafrost layer.Meanwhile,by changing the climate conditions,the same type of TPCT embankment located in the Da Xing'anling Mountains,the Xiao Xing'anling Mountains,and the Qinghai-Tibet Plateau permafrost regions were simulated.Based on the comparison of the climate differences between the Qinghai-Tibet Plateau and Northeast China,the differences in the effectiveness of TPCTs were studied.Finally,the limitations of using existing TPCTs in high-latitude permafrost regions of China were discussed and the potential improvements of the TPCT in cold regions were presented.
文摘1 INTRODUCTIONClosed thermosyphon has been developed to enhance heat transfer and recover wasteheat in various process industries [1,2].Stimulated by this success,a new type oftwo-phase closed thermosyphon was designed by inserting respectively two inner tubesinto the thermosyphon,one in the boiling section and the other in the condensing sec-tion.The two-phase flow boiling heat transfer coefficient was calculated successfully onthe basis of Chen’s dual-mechanism [3].A boiling heat transfer model for thetwo-phase closed thermosyphon with an inner tube in the boiling section was pro-
文摘An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.
基金the financial support from the National Natural Science Foundation of China (No. 50674096)PetroChina Scientific & Technological Risk Innovation Project (No. 060511-2-1)
文摘Compared with a conventional single section two-phase closed thermosyphon (TPCT) wellbore, a two-section TPCT wellbore has better heat transfer performance, which may improve the temperature distribution of fluid in wellbores, increase the temperature of fluid in wellheads and even more effectively reduce the failure rate of conventional TPCT wellbores. Heat transfer performance of two-section TPCT wellbores is affected by working medium, combination mode and oil flow rate. Different working media are introduced into the upper and lower TPCTs, which may achieve a better match between the working medium and the temperature field in the wellbores. Interdependence exists between the combination mode and the flow rate of the oil, which affects the heat transfer performance of a two-section TPCT wellbore. The experimental results show that a two-section TPCT wellbore, with equal upper and lower TPCTs respectively filled with Freon and methanol, has the best heat transfer performance when the oil flow rate is 200 L/h.
文摘Heat transfer and hydrodynamics of two phase closed thermosyphon (TPCT) is studied using finite difference method of Stream function and vorticity. The mathematical model is formed for both vapor phase and liquid film in a non-dimensional form. The momentum and energy equations as parabolic equations have been solved by means of the locally one-dimensional scheme of A.A. Samarskii. The Poisson equation for the stream function has been approximated on the basis of the discrete scheme "cross". The obtained system of algebraic equations has been solved by the successive over relaxation method. The effect of the Rayleigh number on the velocity and temperature fields in the domain of interest and on the average Nusselt number at the solid-fluid interfaces is investigated. It was found that increase in the Rayleigh number leads to the increment of both the average Nusselt number and the stream function in the vapor zone.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2021QZKK0205 and 2021QZKK0201)the Research Project of the State Key Laboratory of Frozen Soil Engineering (SKLFSE202101).
文摘Over the years,numerous geotechnical approaches have been implemented to mitigate the adverse effects of climate warming on various infrastructures in the permafrost region of the Qinghai-Tibet Plateau(QTP),such as the Qinghai-Tibet Highway and Railway,and achieved the expected engineering outcomes.However,little attention has been given to whether the performance of these geotechnical approaches has changed during the ongoing process of climate warming.To investigate the performance variation of one of these geotechnical approaches,which is two-phase closed thermosyphon(TPCT),during sustained climate warming,we conducted a statistical analysis of soil temperature monitoring data in 2003-2020 from eight regular embankments and six TPCT embankments in our permafrost monitoring network.The results indicate that TPCT undeniably has a cooling effect on the permafrost beneath embankments,even rapidly eliminated previously formed taliks beneath embankment.However,further analysis reveals that the performance of TPCT has been weakening during sustained climate warming,which has confirmed by the re-forming of the taliks beneath embankment where they had been previously eliminated.Based on the current understanding,we attributed the weakening of thermosyphon performance to a significant reduction in the air temperature freezing index caused by ongoing climate warming.Through this study,we aimed to draw attention to the evolving performance of geotechnical approaches in permafrost regions amid climate warming,prompting necessary engineering innovations to address this situation and ensure the sustainable development of the permafrost region on the QTP.
基金the National Science and Technology Major Project of China(No.2016ZX05028-004-003).
文摘Dedicated experiments and numerical simulations have been conducted to investigate the splitting characteristics of a gas-liquid two phase flow at a T junction.The experiments were carried out for different gas-liquid velocities.The flow rates in the two branches were measured accurately to determine how the two considered phases distribute in the two outlets.The experimental results have shown that when the two outlet pressures are asymmetric,the two-phase flow always tends to flow into the outlet which has a lower pressure.As the inlet liquid velocity increases,however,the two-phase flow gradually tends to split evenly.Compared with the experiment results,the pressure difference between the two outlets can be determined more accurately by means of numerical simulation.The trends of experimental results and simulations are in very good agreement.
文摘With rapid development of the semiconductor technology, more efficient cooling systems for electronic devices are needed. In this situation, in the present study, a loop thermosyphon type cooling system, which is composed mainly of a heating block, an evaporator and an air-cooled condenser, is investigated experimentally in order to evaluate the cooling performance. At first, it is examined that the optimum volume filling rate of this cooling system is approximately 40%. Next, four kinds of working fluids, R1234ze(E), R1234ze(Z), R134a and ethanol, are tested using a blasted heat transfer surface of the evaporator. In cases of R1234ze(E), R1234ze(Z), R134a and ethanol, the effective heat flux, at which the heating block surface temperature reaches 70°C, is 116 W/cm2, 106 W/cm2, 104 W/cm2 and 60 W/cm2, respectively. This result indicates that R1234ze(E) is the most suitable for the present cooling system. The minimum boiling thermal resistance of R1234ze(E) is 0.05 (cm2·K)/W around the effective heat flux of 100 W/cm2. Finally, four kinds of heat transfer surfaces of the evaporator, smooth, blasted, copper-plated and finned surfaces, are tested using R1234ze(E) as working fluid. The boiling thermal resistance of the blasted surface is the smallest among tested heat transfer surfaces up to 116 W/cm2 in effective heat flux. However, it increases drastically due to the appearance of dry-patch if the effective heat flux exceeds 116 W/cm2. On the other hand, in cases of copper-plated and finned surfaces, the dry-patch does not appear up to 150 W/cm2 in effective heat flux, and the boiling thermal resistances of those surfaces keep 0.1 (cm2·K)/W.
基金This work was supported by National Natural Science Foundation of China(NSFC)(Grant No.51878254)National Key R&D Program of China(Grant No.2018YFE0111200)+1 种基金Key Research and Development Plan of Hunan Province(2020WK2012)Hunan Provincial Science and Technology Department(2020GK4057).
文摘To better analyzing the temperature oscillation and the two-phase behavior inside a flat loop heat pipe,visual studies were conducted.Under the 20℃ water cooling and horizontal orientation,the effects of the filling ratio and heat loads on the temperature oscillation were analyzed.Based on the experimental data,the results indicate that owing to the increased system pressure,the temperature oscillation decays as the filling ratio increases from 34%to 58%.Meanwhile,during the startup process,temperature oscillation tends to occur during the boiling and steady stages due to the more violent two-phase behavior,while the temperature curves are smooth during the slow evaporation stage.Moreover,as the heat load increases,the evaporation becomes more intense at the active zone of evaporator,leading to a faster startup process and a higher oscillation frequency.Besides,owing to the synergistic effect of two-phase flow in the compensation chamber caused by heat leak and subcooled liquid backflowing,a“breathing”oscillation behavior of the vapor-liquid interface is observed at the compensation chamber,which further leads to the unstable operation behavior of the loop heat pipe system.
文摘Heat transfer of a capillary evaporator in a loop heat pipe was analyzed through 3D numerical simulations to study the effects of the thermal conductivity of the wick, the contact area between the casing and the wick, and the subcooling in the compensation chamber (CC) on the thermal performance of the evaporator. A pore network model with a distribution of pore radii was used to simulate liquid flow in the porous structure of the wick. To obtain high accuracy, fine meshes were used at the boundaries among the casing, the wick, and the grooves. Distributions of temperature, pressure, and mass flow rate were compared for polytetra-fluoroethylene (PTFE) and stainless steel wicks. The thermal conductivity of the wick and the contact area between the casing and the wick significantly impacted thermal performance of the evaporator heat-transfer coefficient and the heat leak to the CC. The 3D analysis provided highly accurate values for the heat leak;in some cases, the heat leaks of PTFE and stainless steel wicks showed little differences. In general, the heat flux is concentrated at the boundaries between the casing, the wick, and the grooves;therefore, thermal performance can be optimized by increasing the length of the boundary.
文摘Multiple loop heat pipes which have two evaporators and two condensers in one loop are a kind of active heat transfer device. Since they have two evaporators and two condensers, the operating mode also becomes multiple. This work discusses the cases that multiple loop heat pipes were operated with one condenser at high temperature and the other at low temperature. To avoid the high temperature returning liquid and keep the multiple loop heat pipes work properly, the flow regulator which was made of polyethylene was designed, fabricated and applied in this test. The effect of flow regulator was confirmed and analyzed. In the test that large temperature difference existed between two sinks, it can be found according to the result that the flow regulator worked effectively and prevented the high temperature vapor to enter the inlet of common liquid line, which can keep the evaporators and returning liquid to operate at low temperature. With the increment of heat loads and the temperature difference between two sinks, the pressure difference between two condensers became larger and larger. When the pressure difference was larger than the flow regulator’s capillary force, the flow regulator could not work properly because the high temperature vapor began to flow through the flow regulator. According to the test data, the flow regulator can work properly within the sinks’ temperature 0°C/60°C and the two evaporators’ heat load 30/30 W.
文摘This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condensers in a loop heat pipe in order to adapt to various changes of thermal condition in spacecraft. The PTFE porous media was used as the primary wicks to reduce heat leak from evaporators to compensation chambers. The tests were conducted under an atmospheric condition. In the tests that heat loads are applied to both evaporators, the MLHP was stably operated as with a LHP with a single evaporator and a single condenser. The relation between the sink temperature and the thermal resistance was experimentally evaluated. In the test with the heat load to one evaporator, the heat transfer from the heated evaporator to the unheated evaporator was confirmed. In the heat load switching test, in which the heat load is switched from one evaporator to another evaporator repeatedly, the MLHP could be stably operated. The loop operation with the large temperature difference between the heat sinks was also tested. From this result, the stable operation of the MLHP in the various conditions was demonstrated. It was also found that a flow regulator which prevents the uncondensed vapor from the condensers is required at the inlet of the common liquid line when one condenser has higher temperature and cannot condense the vapor in it.
基金The present research work was supported by the Federal Ministry for Economic Affairs and Energy of Germanyunder the funding code FKZ:03ET1050B.
文摘The heat transfer perfonmance of a vertical two-phase closed thermosyphon(TPCT)used in a geothermal heat pump was experimentally investigated.The TPCT is a verticalplain steel pipe with inner diameter of 114 mm and bored 368 m deep underground.Carbon dioxide(CO_(2))is used as working fluid.In the TPCT there is no condensation section.CO_(2)is condensed by the evaporator pf the heat pump,flows into the head of the TPCT and nuns down as a falling film along the inner wall of the pipe.For the heat transfer simulation in the TPCT,a quasi-dynamic model in which the mass transfer between the liquid and vapor phases as well as the conduction heat transfer from the surrounding soil towards the pipe is treated dynamically.However the film flow modeling is based on the Nusselt theory of frilm condenssation.The compauison of the experimental data with the numerical simulation is presented and discussed.
基金supported by the National Natural Science Foundation of China(No.51806010)Shanghai Sailing Program,China(No.18YF1409100).
文摘Mechanically pumped two-phase loop(MPTL)which is a prominent two-phase heat transfer technology presents a promising prospect in thermal control for space payload.However,transient behavior of MPTL caused by phase-change and heat sources load-on/off in simulated space environment is rarely reported.In the present study,one MPTL setup was designed and constructed,and experimentally studied.Particularly,a novel two-phase thermally-controlled accumulator integrated with passive cooling measure and three capillary structures was designed as the temperature-control device.Dynamic behavior of the start-up,temperature control,and temperature adjustment were monitored;meanwhile,thermodynamic behavior within the proposed accumulator,the operating behavior as well as the heat and mass transfer behavior between the main loop and the accumulator were revealed.The results show that the fluid management function of the capillary structures for the novel accumulator is verified.The working point of the MPTL system can be adjusted by changing the temperature control point of the accumulator and it is little influenced by external heat flux and heat sources on/off.Pressure-drop oscillations which are manifested as fluctuations of temperature and pressure can be observed after phase changing due to the compressible volume within the accumulator and the negative-slope portion of the internal pressure.