The properties of one-photon absorption(OPA),emission and two-photon absorption(TPA)of a bipyridine-based zinc ion probe are investigated employing the density functional theory in combination with response functions....The properties of one-photon absorption(OPA),emission and two-photon absorption(TPA)of a bipyridine-based zinc ion probe are investigated employing the density functional theory in combination with response functions.The responsive mechanism and coordination mode effect are explored.The structural fluctuation is illustrated by molecular dynamics simulation.The calculated OPA and emission wavelengths of the probe are consistent with the experimental data.It is found that the red-shift of OPA wavelength and the enhancement of TPA intensity are induced by the increased intra-molecular charge transfer mechanism upon metal binding.The structural fluctuation could result in the blue-shift of TPA wavelength and the decrease of the TPA cross section.The TPA properties are quite different among the zinc complexes with different coordination modes.The TPA wavelength of the complexes with two ligands is close to that of the probe,which is in agreement with the experimental observation.展开更多
Response theory is used to investigate one- and two-photon absorption(TPA) as well as the emission properties of a series of potential zinc ion and pH sensitive materials containing 2-(2'-hydroxyphenyl)benzoxazol...Response theory is used to investigate one- and two-photon absorption(TPA) as well as the emission properties of a series of potential zinc ion and pH sensitive materials containing 2-(2'-hydroxyphenyl)benzoxazole(HPBO) end groups.Special emphasis is placed on the evolution of their optical properties upon combining with zinc ions or deprotonation.Our calculated results indicate that upon combining with zinc ions or deprotonation,these HPBO derivatives show drastic changes in their one-photon absorption(OPA),emission,and TPA properties.Moreover,the mechanisms of the probes are analyzed and found to be an intramolecular charge transfer.These compounds are thus proved to be excellent candidates for two-photon fluorescent zinc and pH probes.展开更多
The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with res...The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.展开更多
Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affec...Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.展开更多
Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied o...Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied on advanced equipment.Herein,we develop a fast,convenient,high-selective fluorescence detection method based on metal-organic cages(MOC),whose emission is enhanced by nearly 20 times in the presence of LiPF_(6)with good stability and photobleaching resistance.The fluorescent probe can also detect moisture in battery electrolyte.We propose and verify that the luminescence enhancement is due to the presence of hydrogen bond-induced enhanced emission effect in cages.Fluorescent excitation-emission matrix spectra and variable-temperature nuclear magnetic resonance spectroscopy are employed to clarify the role of hydrogen bonds in guest-loaded cages.Density functional theory(DFT)calculation is applied to simulate the structure of host-guest complexes and estimate the adsorption energy involved in the system.The precisely matched lock-and-key model paves a new way for designing and fabricating novel host structures,enabling specific recognition of other target compounds.展开更多
A composite was created by incorporating the quantum dot-enhanced SiO_(2)nanoparticles within this hydrogel.Based on this composite,a temperature-controlled fluorescent probe for DCP was developed.A meticulous examina...A composite was created by incorporating the quantum dot-enhanced SiO_(2)nanoparticles within this hydrogel.Based on this composite,a temperature-controlled fluorescent probe for DCP was developed.A meticulous examination of this probe revealed its attributes and factors affecting its performance.By using temperature modulation,the probe was adept at detecting DCP concentrations ranging between 1.0×10^(-6)and 9.0×10^(-6)mol/L.Such a probe offers remarkable selectivity,repeatability,and robust stability,so that the detection of DCP can be carried out at different temperatures,and a fast,reliable,sensitive and low-cost intelligent detection method is realized.展开更多
AIM:To directly quantify peroxynitrite(ONOO-)using a highly sensitive fluorescence resonance energy transfer probe RN-NA,investigate the association between ONOOand primary open angle glaucoma(POAG),and clarify whethe...AIM:To directly quantify peroxynitrite(ONOO-)using a highly sensitive fluorescence resonance energy transfer probe RN-NA,investigate the association between ONOOand primary open angle glaucoma(POAG),and clarify whether RN-NA could be used as a potential tool for POAG diagnosis.METHODS:Plasma and aqueous humor(AH)samples were collected from POAG patients(n=100,age:59.70±6.87y)and age-related cataract(ARC)patients(n=100,age:61.15±4.60y)admitted to our hospital.Next,RN-NA was used to detect ONOO-in plasma and AH samples,and the relationship between ONOO-level and POAG was analyzed using binary logistic regression.Besides,Pearson correlation analysis was applied to characterize the correlation of the levels of ONOO-with the patients’age,intraocular pressure(IOP),and mean deviation of visual field testing.The ONOO-scavenger MnTMPyP was employed to treat the 3-morpholinosyndnomine(SIN-1)-induced ocular hypertension in mice(n=7,6-8wk).Finally,the IOP and ONOO-in both eyes were measured 30min after the last drug treatment.RESULTS:ONOO-levels of AH and plasma were significantly higher in the POAG group than in the ARC group(P<0.01).Additionally,ONOO-levels were closely correlated with POAG in a binary logistic regression analysis[odds ratio(OR)=1.008,95%confidence interval(CI):1.002-1.013,P<0.01 for AH;OR=1.004,95%CI:1.002-1.006,P<0.001 for plasma].Pearson correlation analysis showed that ONOO-levels in AH or plasma were positively associated with visual field defects(R=0.51,P<0.01 for AH;R=0.45,P<0.001 for plasma),and ONOO-levels in plasma and AH were correlated in the POAG group(R=0.69,P<0.001).However,administering MnTMPyP to mouse eyes reversed the elevated IOP caused by SIN-1(P<0.05).CONCLUSION:ONOO-levels in AH and plasma,detected by RN-NA,are significantly related to POAG and positively correlated with visual field defects in POAG patients.Hence,ONOO-is a potential biomarker of POAG,especially advanced POAG.Besides,anti-nitration compounds may be novel ocular hypotensive agents based on the animal study.展开更多
A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition...A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.展开更多
Autophagy plays a vital role in maintaining the balance of normal physiological state of living cells.In this paper,a polarity-specific two-phot on fluorescent probe Lyso-NA based on naphthalimide was synthesized for ...Autophagy plays a vital role in maintaining the balance of normal physiological state of living cells.In this paper,a polarity-specific two-phot on fluorescent probe Lyso-NA based on naphthalimide was synthesized for the purpose of monitoring autophagy during biological research.The results of photophysical properties and theoretical calculation con firmed that different polarities of solvents mainly effected fluorescent intensities of probe.Fluoresce nt intensity,quantum yield and fluorescence lifetime of probe kept a good linear relationship with polarity respectively.In addition,due to its low toxicity and selective accumulation in lysosomes,Lyso-NA is suitable for detecting changes in lysosomal polarity of living cells.Compare with the imaging results of plasmid transfection,a better performed realtime long-term fluoresce nt visualization of autophagy in living cells was achieved.Probe Lyso-NA can work as an efficient and cost effective imaging tool for visualizing autophagy in living cells.展开更多
Subject Code:H30With the support by the National Natural Science Foundation of China and National Basic Research Program of China,the group led by Prof.Ge Guangbo(葛广波)and Prof.Yang Ling(杨凌)from the Laboratory of ...Subject Code:H30With the support by the National Natural Science Foundation of China and National Basic Research Program of China,the group led by Prof.Ge Guangbo(葛广波)and Prof.Yang Ling(杨凌)from the Laboratory of Pharmaceutical Resource Discovery,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,reported a highly specific ratiometric two-photon fluorescent probe to detect展开更多
The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals...The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals and accelerate the aging of human cells,causing a series of diseases.Hence,the cost-effective and rapid detection of mercury and H_(2)O_(2)is of urgent requirement and significance.Here,we synthesized emerging graphitic carbon nitride quantum dots(g-CNQDs)with high fluorescence quantum yield(FLQY)of 42.69%via a bottom-up strategy by a facile one-step hydrothermal method.The g-CNQDs can detect the H_(2)O_(2)and Hg^(2+)through the fluorescence quenching effect between g-CNQDs and detected substances.With the presence of KI,g-CNQDs show concentration-dependent fluorescence toward H_(2)O_(2),with a wide detection range of 1–1000μmolL^(-1)and a low detection limit of 0.23μmolL^(-1).The g-CNQDs also show sensitivity toward Hg^(2+)with a detection range of 0–0.1μmolL^(-1)and a detection limit of 0.038μmolL^(-1).This dual-function detection of g-CNQDs has better practical application capability compared to other quantum dot detection.This study may provide a new strategy for g-CNQDs preparation and construct a fluorescence probe that can be used in various systems involving H_(2)O_(2)and Hg^(2+),providing better support for future bifunctional or multifunction studies.展开更多
Here a fluorescent probe based on a carbazole derivative(CNS)was developed to increase the detection range and reduce the detection limit of brilliant blue.Characteristics of CNS are studied.Due to the quenching abili...Here a fluorescent probe based on a carbazole derivative(CNS)was developed to increase the detection range and reduce the detection limit of brilliant blue.Characteristics of CNS are studied.Due to the quenching ability of colorants,CNS shows an excellent current response to brilliant blue(from 1 to 10μM)with a detection limit of 2.7×10^(-8)mol/L(3σ/k)in the conditions of a 1:1 volume ratio of water to tetrahydrofuran.And the stability and reproducibility of CNS in the detection of actual samples indicate great potential for application.展开更多
Mitochondria and lysosomes are essential cellular organelles in most eukaryotic cells by playing the physiological roles to support the normal functions of cells, as well as the life of the whole body. To date,small-m...Mitochondria and lysosomes are essential cellular organelles in most eukaryotic cells by playing the physiological roles to support the normal functions of cells, as well as the life of the whole body. To date,small-molecule fluorescent probes have been considered as one of the vital tools for monitoring and visualizing multiple biological analytes. This review summarized the recent advances in small-molecule two-photon fluorescent probes for metal ions, reactive oxygen species(ROS) and reactive sulfur species(RSS), and changes inside micro-environment(e.g., p H, viscosity and polarity) in mitochondria and lysosomes, or served as mitotracker and lysotracker with the assistance of two-photon microscopy.展开更多
A two-photon fluorescent probe TPZn was developed for specific ratiometric imaging Zn2+ in living cells and tissues. Significant ratiometric fluorescence change was based on photoinduced electron transfer and intramo...A two-photon fluorescent probe TPZn was developed for specific ratiometric imaging Zn2+ in living cells and tissues. Significant ratiometric fluorescence change was based on photoinduced electron transfer and intramolecular charge transfer. The synthetic method of TPZn was simple. It was successfully used to selectively image Zn2+ based on the higher binding affinity for Zn2+ than for Cd2+. TPZn was easily loaded into the living cell and tissues with high membrane permeability in a complex biological environment. TPZn could clearly visualize endogenous Zn2+ by TP ratiometric imaging in hippocampal slices at a depth of 120 μm. Thus, TPZn is a useful tool to image of Zn2+ in living cells and tissues without interference from Cd2+.展开更多
A new two-photon fluorescent probe, ADNO, for nitric oxide (NO) based on intramolecular photoinduced electron transfer (PET) mechanism d/splays a rapid response to NO with a remarkable fluorescent enhancement in P...A new two-photon fluorescent probe, ADNO, for nitric oxide (NO) based on intramolecular photoinduced electron transfer (PET) mechanism d/splays a rapid response to NO with a remarkable fluorescent enhancement in PBS buffer. The excellent chemoselectivity of ADNO for NO over other ROS/RNS (reactive oxygen species or nitrogen species) and common metal ions was observed. Moreover, ADNO has been successfully applied in fluorescence imaging of NO of living cells using both one-photon microscopy (OPM) and two-~hoton microscopy (TPM),展开更多
Palladium(0)as one of the vital transition metals,is employed in numerous industries,such as drug synthesis,aerospace high-tech field and automobile industry.When the Pd(0)enter into the body,it will bind with thiol-c...Palladium(0)as one of the vital transition metals,is employed in numerous industries,such as drug synthesis,aerospace high-tech field and automobile industry.When the Pd(0)enter into the body,it will bind with thiol-containing amino acids,DNA,RNA,and other biomolecules damaging to human health.Thus,developing a novel tool for monitoring and imaging of Pd(0)in vivo is very urgent.In the work,based on a intramolecular charge transfer(ICT)mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0).In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0)in 30 min in the aqueous solution with a detection limit of 16 nmol/L.It also showed the outstanding selectivity and antijamming performance.More importantly,NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0)in living cells and mice.展开更多
To improve two-photon absorption(TPA)response of a newly synthesized probe,a series of ratiometric two-photon fluorescent Zn^(2+) sensors based on quinoline and DPA moieties have been designed.The one-photon absorptio...To improve two-photon absorption(TPA)response of a newly synthesized probe,a series of ratiometric two-photon fluorescent Zn^(2+) sensors based on quinoline and DPA moieties have been designed.The one-photon absorption,TPA,and emission properties of the experimental and designed probes before and after coordination with Zn^(2+) are investigated employing the density functional theory in combination with response functions.The design consists of two levels.In the first level of design,five probes are constructed through using several electron acceptors or donors to increase accepting or donating ability of the fluorophores.It shows that all the designed probes have stronger TPA intensities at longer wavelengths with respect to the experimental probe because of the increased intra-molecular charge transfer.Moreover,it is found that the probe 4 built by adding an acyl unit has the largest TPA cross section among the designed structures due to the form of longer conjugated length and more linear backbone.One dimethylamino terminal attached along the skeleton can improve TPA intensity more efficiently than two side amino groups.Therefore,in the second level of design,a new probe 7 is formed by both an acyl unit and a dimethylamino terminal.It exhibits that the TPA cross sections of probe 7 and its zinc complex increase dramatically.Furthermore,the fluorescence quantum yields of the designed probes4 and 7 are calculated in a new way,which makes use of the relation between the computed difference of dipole moment and the measured fluorescence quantum yield.The result shows that our design also improves the fluorescence quantum yield considerably.All in all,the designed probes 4 and 7 not only possess enhanced TPA intensities but also have large differences of emission wavelength upon Zn^(2+) coordination and strong fluorescence intensity,which demonstrates that they are potential ratiometric two-photon fluorescent probes.展开更多
The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make u...The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make use of the full resolution of the MINFLUX microscope,it is important to select appropriate fluorescence probes and labeling strategies,especially in living-cell imaging.This paper mainly focuses on recent applications and developments of fluorescence probes and the relevant labeling strategy for MINFLUX microscopy.Moreover,we discuss the deficiencies that need to be addressed in the future and a plan for the possible progression of MINFLUX to help investigators who have been involved in or are just starting in the field of super-resolution imaging microscopy with theoretical support.展开更多
The insecticide cartap (CP) is non-fluorescent in aqueous solutions. This property makes its determination through direct fluorescent method difficult. In acidic medium and at room temperature, palmatine (PAL) can...The insecticide cartap (CP) is non-fluorescent in aqueous solutions. This property makes its determination through direct fluorescent method difficult. In acidic medium and at room temperature, palmatine (PAL) can react with cucurbit[7]uril (CB[7]) to form stable complexes, and the fluorescence intensity of the complex is greatly enhanced. Significant quenching of the fluorescence intensity of the CB[7]-PAL complex was observed with the addition of cartap. Based on the significant quenching of the supramolecular complex fluorescence intensity, a new spectrofluorimetric method with high sensitivity and selectivity was developed to determine cartap in aqueous solution. The fluorescence quenching values (AF) showed good linear relationship with cartap concentrations from 0.009 to 2.4 ~tg mL-~ with a detection limit 0.0029 ~tg mE-x. The proposed method had been successfully applied to the determination of cartap residues in grain and vegetable with recoveries of 87.4-103%. In addition, the association constants of the complexes formed between the host and the guest were determined. The competing reaction and the supramolecular interaction mechanisms between the cartap and PAL as they fight for occupancy of the CB[7] cavity were studied using spectrofluorimetry, xH NMR and molecular modeling calculations.展开更多
Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe cons...Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.展开更多
基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2014AM026).
文摘The properties of one-photon absorption(OPA),emission and two-photon absorption(TPA)of a bipyridine-based zinc ion probe are investigated employing the density functional theory in combination with response functions.The responsive mechanism and coordination mode effect are explored.The structural fluctuation is illustrated by molecular dynamics simulation.The calculated OPA and emission wavelengths of the probe are consistent with the experimental data.It is found that the red-shift of OPA wavelength and the enhancement of TPA intensity are induced by the increased intra-molecular charge transfer mechanism upon metal binding.The structural fluctuation could result in the blue-shift of TPA wavelength and the decrease of the TPA cross section.The TPA properties are quite different among the zinc complexes with different coordination modes.The TPA wavelength of the complexes with two ligands is close to that of the probe,which is in agreement with the experimental observation.
基金supported by the National Basic Research Program of China(Grant No.2011CB808105)the National Natural Science Foundation of China(Grant No.21303096)
文摘Response theory is used to investigate one- and two-photon absorption(TPA) as well as the emission properties of a series of potential zinc ion and pH sensitive materials containing 2-(2'-hydroxyphenyl)benzoxazole(HPBO) end groups.Special emphasis is placed on the evolution of their optical properties upon combining with zinc ions or deprotonation.Our calculated results indicate that upon combining with zinc ions or deprotonation,these HPBO derivatives show drastic changes in their one-photon absorption(OPA),emission,and TPA properties.Moreover,the mechanisms of the probes are analyzed and found to be an intramolecular charge transfer.These compounds are thus proved to be excellent candidates for two-photon fluorescent zinc and pH probes.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014AM026)the National Natural Science Foundation of China(Grant Nos.11374195 and 11404193)the Taishan Scholar Project of Shandong Province,China
文摘The properties of one-photon absorption(OPA), emission and two-photon absorption(TPA) of a di-2-picolylaminebased zinc ion sensor are investigated by employing the density functional theory in combination with response functions.The responsive mechanism is explored. It is found that the calculated OPA and TPA properties are quite consistent with experimental data. Because the intra-molecular charge transfer(ICT) increases upon zinc ion binding, the TPA intensity is enhanced dramatically. According to the model sensor, we design a series of zinc ion probes which differ by conjugation center, acceptor and donor moieties. The properties of OPA, emission and TPA of the designed molecules are calculated at the same computational level. Our results demonstrate that the OPA and emission wavelengths of the designed probes have large red-shifts after zinc ions have been bound. Comparing with the model sensor, the TPA intensities of the designed probes are enhanced significantly and the absorption positions are red-shifted to longer wavelength range. Furthermore, the TPA intensity can be improved greatly upon zinc ion binding due to the increased ICT mechanism. These compounds are potential excellent candidates for two-photon fluorescent zinc ion probes.
基金supported by the National Natural Science Foundation of China(82072432)the China-Japan Friendship Hospital Horizontal Project/Spontaneous Research Funding(2022-HX-JC-7)+1 种基金the National High Level Hospital Clinical Research Funding(2022-NHLHCRF-PY-20)the Elite Medical Professionals project of China-Japan Friendship Hospital(ZRJY2021-GG12).
文摘Rheumatoid arthritis(RA)is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability,thus adversely affecting locomotion ability and life quality.Consequently,good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA.Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging.Herein,we review the fluorescent probes developed for the detection and imaging of RA biomarkers,namely reactive oxygen/nitrogen species(hypochlorous acid,peroxynitrite,hydroxyl radical,nitroxyl),pH,and cysteine,and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.
基金supported by National Natural Science Foundation of China(No.22278308,22109114 and 22102099)。
文摘Lithium hexafluorophosphate(LiPF_(6)),the most commonly used lithium battery electrolyte salt,is vulnerable to heat and humidity.Quantitative and qualitative determination the variation of LiPF_(6)have always relied on advanced equipment.Herein,we develop a fast,convenient,high-selective fluorescence detection method based on metal-organic cages(MOC),whose emission is enhanced by nearly 20 times in the presence of LiPF_(6)with good stability and photobleaching resistance.The fluorescent probe can also detect moisture in battery electrolyte.We propose and verify that the luminescence enhancement is due to the presence of hydrogen bond-induced enhanced emission effect in cages.Fluorescent excitation-emission matrix spectra and variable-temperature nuclear magnetic resonance spectroscopy are employed to clarify the role of hydrogen bonds in guest-loaded cages.Density functional theory(DFT)calculation is applied to simulate the structure of host-guest complexes and estimate the adsorption energy involved in the system.The precisely matched lock-and-key model paves a new way for designing and fabricating novel host structures,enabling specific recognition of other target compounds.
基金Funded by the Natural Science Foundation of Hubei Province(No.2022CFB861)the Wenhua College Research and Innovation Team(No.2022T01)。
文摘A composite was created by incorporating the quantum dot-enhanced SiO_(2)nanoparticles within this hydrogel.Based on this composite,a temperature-controlled fluorescent probe for DCP was developed.A meticulous examination of this probe revealed its attributes and factors affecting its performance.By using temperature modulation,the probe was adept at detecting DCP concentrations ranging between 1.0×10^(-6)and 9.0×10^(-6)mol/L.Such a probe offers remarkable selectivity,repeatability,and robust stability,so that the detection of DCP can be carried out at different temperatures,and a fast,reliable,sensitive and low-cost intelligent detection method is realized.
基金Supported by the National Natural Science Foundation of China(No.81870692,No.82070959,No.82271082)the Shanghai Committee of Science and Technology,China(No.20S31905800)Clinical Research Plan of SHDC(No.SHDC2020CR6029).
文摘AIM:To directly quantify peroxynitrite(ONOO-)using a highly sensitive fluorescence resonance energy transfer probe RN-NA,investigate the association between ONOOand primary open angle glaucoma(POAG),and clarify whether RN-NA could be used as a potential tool for POAG diagnosis.METHODS:Plasma and aqueous humor(AH)samples were collected from POAG patients(n=100,age:59.70±6.87y)and age-related cataract(ARC)patients(n=100,age:61.15±4.60y)admitted to our hospital.Next,RN-NA was used to detect ONOO-in plasma and AH samples,and the relationship between ONOO-level and POAG was analyzed using binary logistic regression.Besides,Pearson correlation analysis was applied to characterize the correlation of the levels of ONOO-with the patients’age,intraocular pressure(IOP),and mean deviation of visual field testing.The ONOO-scavenger MnTMPyP was employed to treat the 3-morpholinosyndnomine(SIN-1)-induced ocular hypertension in mice(n=7,6-8wk).Finally,the IOP and ONOO-in both eyes were measured 30min after the last drug treatment.RESULTS:ONOO-levels of AH and plasma were significantly higher in the POAG group than in the ARC group(P<0.01).Additionally,ONOO-levels were closely correlated with POAG in a binary logistic regression analysis[odds ratio(OR)=1.008,95%confidence interval(CI):1.002-1.013,P<0.01 for AH;OR=1.004,95%CI:1.002-1.006,P<0.001 for plasma].Pearson correlation analysis showed that ONOO-levels in AH or plasma were positively associated with visual field defects(R=0.51,P<0.01 for AH;R=0.45,P<0.001 for plasma),and ONOO-levels in plasma and AH were correlated in the POAG group(R=0.69,P<0.001).However,administering MnTMPyP to mouse eyes reversed the elevated IOP caused by SIN-1(P<0.05).CONCLUSION:ONOO-levels in AH and plasma,detected by RN-NA,are significantly related to POAG and positively correlated with visual field defects in POAG patients.Hence,ONOO-is a potential biomarker of POAG,especially advanced POAG.Besides,anti-nitration compounds may be novel ocular hypotensive agents based on the animal study.
基金supported by the National Natural Science Foundation of China(21804050)the National Key R and D Program of China(2018YFD0901003)+2 种基金the Science and Technology Planning Project of Xiamen,China(3502Z20183031)the Fujian Provincial Fund Project(2018J01432)the Xiamen Science and Technology Planning Project,China(3502Z20183031)。
文摘A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.
基金This work was supported by the National Natural Science Foundation of China(Nos.22077001,21778001 and 21672001)the Natural Science Foundation of Anhui Province(No.2008085J08)+2 种基金the Natural Science Foundation of Education Department of Anhui Province(No.KJ2019A0010)Joint Open Fund of Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments,Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province(No.JH201803)the Open fund for Discipline Construction in Institute of Physical Science and In formation Technology of Anhui University.
文摘Autophagy plays a vital role in maintaining the balance of normal physiological state of living cells.In this paper,a polarity-specific two-phot on fluorescent probe Lyso-NA based on naphthalimide was synthesized for the purpose of monitoring autophagy during biological research.The results of photophysical properties and theoretical calculation con firmed that different polarities of solvents mainly effected fluorescent intensities of probe.Fluoresce nt intensity,quantum yield and fluorescence lifetime of probe kept a good linear relationship with polarity respectively.In addition,due to its low toxicity and selective accumulation in lysosomes,Lyso-NA is suitable for detecting changes in lysosomal polarity of living cells.Compare with the imaging results of plasmid transfection,a better performed realtime long-term fluoresce nt visualization of autophagy in living cells was achieved.Probe Lyso-NA can work as an efficient and cost effective imaging tool for visualizing autophagy in living cells.
文摘Subject Code:H30With the support by the National Natural Science Foundation of China and National Basic Research Program of China,the group led by Prof.Ge Guangbo(葛广波)and Prof.Yang Ling(杨凌)from the Laboratory of Pharmaceutical Resource Discovery,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,reported a highly specific ratiometric two-photon fluorescent probe to detect
基金support from the Natural Science Foundation of Shandong Province(No.ZR2021 MB075)National Natural Science Foundation of China(No.51602297)the Opening Fund of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering(No.2021-K53).
文摘The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals and accelerate the aging of human cells,causing a series of diseases.Hence,the cost-effective and rapid detection of mercury and H_(2)O_(2)is of urgent requirement and significance.Here,we synthesized emerging graphitic carbon nitride quantum dots(g-CNQDs)with high fluorescence quantum yield(FLQY)of 42.69%via a bottom-up strategy by a facile one-step hydrothermal method.The g-CNQDs can detect the H_(2)O_(2)and Hg^(2+)through the fluorescence quenching effect between g-CNQDs and detected substances.With the presence of KI,g-CNQDs show concentration-dependent fluorescence toward H_(2)O_(2),with a wide detection range of 1–1000μmolL^(-1)and a low detection limit of 0.23μmolL^(-1).The g-CNQDs also show sensitivity toward Hg^(2+)with a detection range of 0–0.1μmolL^(-1)and a detection limit of 0.038μmolL^(-1).This dual-function detection of g-CNQDs has better practical application capability compared to other quantum dot detection.This study may provide a new strategy for g-CNQDs preparation and construct a fluorescence probe that can be used in various systems involving H_(2)O_(2)and Hg^(2+),providing better support for future bifunctional or multifunction studies.
基金Funded by the Open Subject from Jiangsu Marine Resources Development Research Institute (JSIMR202117)the Training Programs of Innovation and Entrepreneurship for College Students in Jiangsu Ocean University。
文摘Here a fluorescent probe based on a carbazole derivative(CNS)was developed to increase the detection range and reduce the detection limit of brilliant blue.Characteristics of CNS are studied.Due to the quenching ability of colorants,CNS shows an excellent current response to brilliant blue(from 1 to 10μM)with a detection limit of 2.7×10^(-8)mol/L(3σ/k)in the conditions of a 1:1 volume ratio of water to tetrahydrofuran.And the stability and reproducibility of CNS in the detection of actual samples indicate great potential for application.
基金supported by the National Natural Science Foundation of China (Nos. 21778001, 21372005)the Anhui Provincial Natural Science Foundation (No. 1608085MB39)+1 种基金the Natural Science Foundation of Education Department of Anhui Province (No. KJ2015A047)the 211 Project of Anhui University
文摘Mitochondria and lysosomes are essential cellular organelles in most eukaryotic cells by playing the physiological roles to support the normal functions of cells, as well as the life of the whole body. To date,small-molecule fluorescent probes have been considered as one of the vital tools for monitoring and visualizing multiple biological analytes. This review summarized the recent advances in small-molecule two-photon fluorescent probes for metal ions, reactive oxygen species(ROS) and reactive sulfur species(RSS), and changes inside micro-environment(e.g., p H, viscosity and polarity) in mitochondria and lysosomes, or served as mitotracker and lysotracker with the assistance of two-photon microscopy.
基金supported by the Introduction Research Item of Northwest University for Nationalities(No.xbmuyjrc201110)the Fundamental Research Funds for the Central Universities(Nos.zyz2012062 and 31920130024)the Young and Middle-Aged Scientists Research Fund of Northwest University for Nationalities(No.12XB34)
文摘A two-photon fluorescent probe TPZn was developed for specific ratiometric imaging Zn2+ in living cells and tissues. Significant ratiometric fluorescence change was based on photoinduced electron transfer and intramolecular charge transfer. The synthetic method of TPZn was simple. It was successfully used to selectively image Zn2+ based on the higher binding affinity for Zn2+ than for Cd2+. TPZn was easily loaded into the living cell and tissues with high membrane permeability in a complex biological environment. TPZn could clearly visualize endogenous Zn2+ by TP ratiometric imaging in hippocampal slices at a depth of 120 μm. Thus, TPZn is a useful tool to image of Zn2+ in living cells and tissues without interference from Cd2+.
基金the National Natural Science Foundation of China(Nos.21102148 and 21125205)National Basic Research Program of China(No.2011CB935800)the State Key Laboratory of Fine Chemicals,Department of Chemical Engineering,Dalian University of Technology for financial supports
文摘A new two-photon fluorescent probe, ADNO, for nitric oxide (NO) based on intramolecular photoinduced electron transfer (PET) mechanism d/splays a rapid response to NO with a remarkable fluorescent enhancement in PBS buffer. The excellent chemoselectivity of ADNO for NO over other ROS/RNS (reactive oxygen species or nitrogen species) and common metal ions was observed. Moreover, ADNO has been successfully applied in fluorescence imaging of NO of living cells using both one-photon microscopy (OPM) and two-~hoton microscopy (TPM),
基金the National Science Foundation of China(Nos.21421005,21576037 and U1608222)。
文摘Palladium(0)as one of the vital transition metals,is employed in numerous industries,such as drug synthesis,aerospace high-tech field and automobile industry.When the Pd(0)enter into the body,it will bind with thiol-containing amino acids,DNA,RNA,and other biomolecules damaging to human health.Thus,developing a novel tool for monitoring and imaging of Pd(0)in vivo is very urgent.In the work,based on a intramolecular charge transfer(ICT)mechanism a two-photon fluorescent probe NIPd had been designed and synthesized for the recognition Pd(0).In vitro experiments data displayed that probe NIPd exhibited a 13-fold fluorescent increase for Pd(0)in 30 min in the aqueous solution with a detection limit of 16 nmol/L.It also showed the outstanding selectivity and antijamming performance.More importantly,NIPd could be served as a two-photon fluorescent probe for real-time monitoring Pd(0)in living cells and mice.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2020MA078)。
文摘To improve two-photon absorption(TPA)response of a newly synthesized probe,a series of ratiometric two-photon fluorescent Zn^(2+) sensors based on quinoline and DPA moieties have been designed.The one-photon absorption,TPA,and emission properties of the experimental and designed probes before and after coordination with Zn^(2+) are investigated employing the density functional theory in combination with response functions.The design consists of two levels.In the first level of design,five probes are constructed through using several electron acceptors or donors to increase accepting or donating ability of the fluorophores.It shows that all the designed probes have stronger TPA intensities at longer wavelengths with respect to the experimental probe because of the increased intra-molecular charge transfer.Moreover,it is found that the probe 4 built by adding an acyl unit has the largest TPA cross section among the designed structures due to the form of longer conjugated length and more linear backbone.One dimethylamino terminal attached along the skeleton can improve TPA intensity more efficiently than two side amino groups.Therefore,in the second level of design,a new probe 7 is formed by both an acyl unit and a dimethylamino terminal.It exhibits that the TPA cross sections of probe 7 and its zinc complex increase dramatically.Furthermore,the fluorescence quantum yields of the designed probes4 and 7 are calculated in a new way,which makes use of the relation between the computed difference of dipole moment and the measured fluorescence quantum yield.The result shows that our design also improves the fluorescence quantum yield considerably.All in all,the designed probes 4 and 7 not only possess enhanced TPA intensities but also have large differences of emission wavelength upon Zn^(2+) coordination and strong fluorescence intensity,which demonstrates that they are potential ratiometric two-photon fluorescent probes.
基金supported by the Science and Technology Commission of Shanghai Municipality (21DZ1100500)the Shanghai Municipal Science and Technology Major Project+1 种基金the Shanghai Frontiers Science Center Program (2021-2025 No.20)Shanghai Hong Kong,Macao,and Taiwan Cooperation Project (No.19490760900).
文摘The MINimal emission FLUXes(MINFLUX)technique in optical microscopy,widely recognized as the next innovative fluorescence microscopy method,claims a spatial resolution of 1-3 nm in both dead and living cells.To make use of the full resolution of the MINFLUX microscope,it is important to select appropriate fluorescence probes and labeling strategies,especially in living-cell imaging.This paper mainly focuses on recent applications and developments of fluorescence probes and the relevant labeling strategy for MINFLUX microscopy.Moreover,we discuss the deficiencies that need to be addressed in the future and a plan for the possible progression of MINFLUX to help investigators who have been involved in or are just starting in the field of super-resolution imaging microscopy with theoretical support.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China(20091404110001)
文摘The insecticide cartap (CP) is non-fluorescent in aqueous solutions. This property makes its determination through direct fluorescent method difficult. In acidic medium and at room temperature, palmatine (PAL) can react with cucurbit[7]uril (CB[7]) to form stable complexes, and the fluorescence intensity of the complex is greatly enhanced. Significant quenching of the fluorescence intensity of the CB[7]-PAL complex was observed with the addition of cartap. Based on the significant quenching of the supramolecular complex fluorescence intensity, a new spectrofluorimetric method with high sensitivity and selectivity was developed to determine cartap in aqueous solution. The fluorescence quenching values (AF) showed good linear relationship with cartap concentrations from 0.009 to 2.4 ~tg mL-~ with a detection limit 0.0029 ~tg mE-x. The proposed method had been successfully applied to the determination of cartap residues in grain and vegetable with recoveries of 87.4-103%. In addition, the association constants of the complexes formed between the host and the guest were determined. The competing reaction and the supramolecular interaction mechanisms between the cartap and PAL as they fight for occupancy of the CB[7] cavity were studied using spectrofluorimetry, xH NMR and molecular modeling calculations.
基金financially supported by the National Natural Science Foundation of China (No. 21674011)Beijing Municipal Natural Science Foundation (No. 2172040)
文摘Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.