We present a two-photon interference experiment in a modified Mach-Zehnder (MZ) interferometer in which two Hong-Ou-Mandel effects occur in tandem and construct superposed two-photon states. The signal photons pass ...We present a two-photon interference experiment in a modified Mach-Zehnder (MZ) interferometer in which two Hong-Ou-Mandel effects occur in tandem and construct superposed two-photon states. The signal photons pass both the arms of the MZ interferometer while the idler photons pass one arm only. Interestingly, the probability of the idler photons emerging from any output port still shows a sine oscillation with the two-photon phase difference and it can be characterized only by the indistinguishability of the two-photon amplitudes. We also observe a two-photon interference pattern with a period being equal to the wavelength of the parametric photons instead of the two-photon photonie de Broglie wavelength due to the presence of two-photon phase difference, in particular, with complementary probabilities of finding the two-photon pairs in two output ports. The abundant observations can facilitate a more comprehensive understanding of the two-photon interference.展开更多
This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal f...This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal field and the dipole-dipole interaction. The results also show that the atom-atom entanglement through the two-photon process is larger than that through the one-photon process and a remarkable amount of entanglement between the atoms still remains at certain times even for a very highly noisy thermal field.展开更多
In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, includin...In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.展开更多
We investigate the influence of the Stark shift on the entanglement transfer from the two-mode squeezed vacuum state field to two spatially separated atoms in two-photon processes. Our results show that the Stark shif...We investigate the influence of the Stark shift on the entanglement transfer from the two-mode squeezed vacuum state field to two spatially separated atoms in two-photon processes. Our results show that the Stark shift plays an important role in such entanglement transfer. We find that when the Stark shift parameter r is small, the degree of entanglement between the two atoms increases with the increasing of the squeezing parameter ξ first, and after achieving its maximal value, the degree of entanglement will decrease to zero with the increasing of ξ; while for big r, E will increase with the increasing of ξ.展开更多
We theoretically study the properties of a dielectric plate with a modified Hong-Ou-Mandel interferometer. The fourth-order correlation functions are calculated in two regimes, which are divided depending on the relat...We theoretically study the properties of a dielectric plate with a modified Hong-Ou-Mandel interferometer. The fourth-order correlation functions are calculated in two regimes, which are divided depending on the relative size between the thickness of the dielectric plate and the one-photon coherence length. When the thickness of the dielectric plate is less than the one-photon coherence length, a novel modulation behavior of the coincidence rate is observed, which has not been discussed before. If the thickness of the dielectric plate is larger than the one-photon coherence length, coalescence and anti-coalescence are observed. The obtained results highlight the effects of a linear optical element on fourth-order interference.展开更多
The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by em- ploying two-photon interference in Feynman's path integral theory. It is concluded that whether the sec...The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by em- ploying two-photon interference in Feynman's path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra.展开更多
The second-order temporal interference of classical and nonclassical light at an asymmetrical beam splitter is discussed based on two-photon interference in Feynman's path integral theory. The visibility of the secon...The second-order temporal interference of classical and nonclassical light at an asymmetrical beam splitter is discussed based on two-photon interference in Feynman's path integral theory. The visibility of the second-order interference pattern is determined by the properties of the superposed light beams, the ratio between the intensities of these two light beams, and the reflectivity of the asymmetrical beam splitter. Some requirements about the asymmetrical beam splitter have to be satisfied in order to ensure that the visibility of the second-order interference pattern of nonclassical light beams exceeds the classical limit. The visibility of the second-order interference pattern of photons emitted by two independent single-photon sources is independent of the ratio between the intensities. These conclusions are important for the researches and applications in quantum optics and quantum information when an asymmetrical beam splitter is employed.展开更多
The second-order interference of two independent photons with different spectra in a Shih-Alley/Hong-Ou-Mandel interferometer is studied in Feynman's path integral theory. There is a second-order interference patt...The second-order interference of two independent photons with different spectra in a Shih-Alley/Hong-Ou-Mandel interferometer is studied in Feynman's path integral theory. There is a second-order interference pattern for photons with different spectra if the photons are indistinguishable for the employed detection system. The conditions to observe the second-order temporal beating with photons of different spectra are analyzed. The influence of the response time of the detection system on the observed second-order interference pattern is also discussed. It is a direct result of that measurement in quantum mechanics is dependent on the employed measuring apparatus. The results are helpful to understand the physics of two-photon interference in different schemes.展开更多
We theoretically investigate the features of two-photon absorption in a coherently driven four-level atomic system with closed-loop configuration. It is found that two-photon absorption can be completely suppressed ju...We theoretically investigate the features of two-photon absorption in a coherently driven four-level atomic system with closed-loop configuration. It is found that two-photon absorption can be completely suppressed just by properly adjusting the relative phase of four coherent low-intensity driving fields and the atomic system becomes trans- parent against two-photon absorption. From a physical point of view, we explicitly explain these results in terms of quantum interference induced by two different two-photon excitation channels.展开更多
Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast ele...Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.展开更多
A scheme has been proposed for generating the macroscopic entanglement between the mesoscopic squeezed vacuum states and mesoscopic coherent states by considering both the two-photon interaction and the single photon ...A scheme has been proposed for generating the macroscopic entanglement between the mesoscopic squeezed vacuum states and mesoscopic coherent states by considering both the two-photon interaction and the single photon interaction of N two-level atoms in cavities with high quality factor assisted by a strong driving field. Moreover, we derive the dissipative interaction models for single photon interaction and two-photon interaction, respectively. The corresponding analytical expressions of the fidelities can be given. Our scheme can be realized in the current techniques on the cavity QED.展开更多
Superbunching pseudothermal light has important applications in studying the second-and higher-order interference of light in quantum optics.Unlike the photon statistics of thermal or pseudothermal light is well under...Superbunching pseudothermal light has important applications in studying the second-and higher-order interference of light in quantum optics.Unlike the photon statistics of thermal or pseudothermal light is well understood,the photon statistics of superbunching pseudothermal light has not been studied yet.In this paper,we will employ single-photon detectors to measure the photon statistics of superbunching pseudothermal light and calculate the degree of second-order coherence.It is found that the larger the value of the degree of second-order coherence of superbunching pseudothermal light is,the more the measured photon distribution deviates from the one of thermal or pseudothermal light in the tail part.The results are helpful to understand the physics of two-photon superbunching with classical light.It is suggested that superbunching pseudothermal light can be employed to generate non-Rayleigh temporal speckles.展开更多
We utilized a set of fused silica thin plates to broaden the spectrum of 1kHz,30 fs Ti:sapphire amplified laser pulses to an octave.Following the compression by chirped mirror pairs,the generated few-cycle pulses were...We utilized a set of fused silica thin plates to broaden the spectrum of 1kHz,30 fs Ti:sapphire amplified laser pulses to an octave.Following the compression by chirped mirror pairs,the generated few-cycle pulses were focused onto an argon filled gas cell.We detected high order harmonics corresponding to a train of 209 as pulses,characterized by the reconstruction of attosecond beating by interference of two-photon transition(RABITT)technique.Compared with the conventional attosecond pulse trains,the broad harmonics in such pulse trains cover more energy range,so it is more efficient in studying some typical cases,such as resonances,with frequency resolved RABITT.As the solid thin plates can support high power supercontinuum generation,it is feasible to tailor the spectrum to have different central wavelength and spectral width,which will make the RABITT source work in different applications.展开更多
Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating ...Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating VVBs. In this review, we focus on the functions and applications of typical LC devices in recent studies on controlling the space-variant polarized vortex light. Manipulation of VVBs through patterned nematic LC optical elements, patterned cholesteric LC optical elements, self-assembled defects, and LC spatial light modulators is discussed separately. Moreover, LC-based novel optical applications in the field of quantum information are reviewed.展开更多
Optical vortices,a type of structured beam with helical phase wavefronts and‘doughnut’-shaped intensity distributions,have been used to fabricate chiral structures in metals and spiral patterns in anisotropic polari...Optical vortices,a type of structured beam with helical phase wavefronts and‘doughnut’-shaped intensity distributions,have been used to fabricate chiral structures in metals and spiral patterns in anisotropic polarization-dependent azobenzene polymers.However,in isotropic polymers,the fabricated microstructures are typically confined to non-chiral cylindrical geometry due to the two-dimensional‘doughnut’-shaped intensity profile of the optical vortices.Here we develop a powerful strategy to realize chiral microstructures in isotropic material by coaxial interference of a vortex beam and a plane wave,which produces threedimensional(3D)spiral optical fields.These coaxial interference beams are generated by designing contrivable holograms consisting of an azimuthal phase and an equiphase loaded on a liquid-crystal spatial light modulator.In isotropic polymers,3D chiral microstructures are achieved under illumination using coaxial interference femtosecond laser beams with their chirality controlled by the topological charge.Our further investigation reveals that the spiral lobes and chirality are caused by interfering patterns and helical phase wavefronts,respectively.This technique is simple,stable and easy to perform,and it offers broad applications in optical tweezers,optical communications and fast metamaterial fabrication.展开更多
基金Supported by the National Key R&D Program of China under Grant Nos 2017YFA0303800 and 2017YFA0303700the National Natural Science Foundation of China under Grant Nos 11534006,11774183 and 11674184+1 种基金the Natural Science Foundation of Tianjin under Grant No 16JCZDJC31300the Collaborative Innovation Center of Extreme Optics
文摘We present a two-photon interference experiment in a modified Mach-Zehnder (MZ) interferometer in which two Hong-Ou-Mandel effects occur in tandem and construct superposed two-photon states. The signal photons pass both the arms of the MZ interferometer while the idler photons pass one arm only. Interestingly, the probability of the idler photons emerging from any output port still shows a sine oscillation with the two-photon phase difference and it can be characterized only by the indistinguishability of the two-photon amplitudes. We also observe a two-photon interference pattern with a period being equal to the wavelength of the parametric photons instead of the two-photon photonie de Broglie wavelength due to the presence of two-photon phase difference, in particular, with complementary probabilities of finding the two-photon pairs in two output ports. The abundant observations can facilitate a more comprehensive understanding of the two-photon interference.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025)Hunan Provincial Natural Science Foundation (Grant Nos 06JJ4003 and 06JJ2014)the Young Scientific Research Foundation of Hunan Provincial Education Department (Grand No 04B070)
文摘This paper studies entanglement between two dipole-dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal field and the dipole-dipole interaction. The results also show that the atom-atom entanglement through the two-photon process is larger than that through the one-photon process and a remarkable amount of entanglement between the atoms still remains at certain times even for a very highly noisy thermal field.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10374025)the Natural Science Foundation of Hunan Province of China (Grant No. 07JJ3013)the Education Ministry of Hunan Province of China (Grant No. 06A038)
文摘In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.
基金The project supported by National Natural Science Foundation of China under Grant No.10374007
文摘We investigate the influence of the Stark shift on the entanglement transfer from the two-mode squeezed vacuum state field to two spatially separated atoms in two-photon processes. Our results show that the Stark shift plays an important role in such entanglement transfer. We find that when the Stark shift parameter r is small, the degree of entanglement between the two atoms increases with the increasing of the squeezing parameter ξ first, and after achieving its maximal value, the degree of entanglement will decrease to zero with the increasing of ξ; while for big r, E will increase with the increasing of ξ.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874171 and 11174271)the National Fundamental Research Program of China (Grant No. 2011CB00200)+1 种基金the Innovation Fund from Chinese Academy of Sciencesthe Program for New Century Excellent Talents in University of China (Grant No. NCET-07-0791)
文摘We theoretically study the properties of a dielectric plate with a modified Hong-Ou-Mandel interferometer. The fourth-order correlation functions are calculated in two regimes, which are divided depending on the relative size between the thickness of the dielectric plate and the one-photon coherence length. When the thickness of the dielectric plate is less than the one-photon coherence length, a novel modulation behavior of the coincidence rate is observed, which has not been discussed before. If the thickness of the dielectric plate is larger than the one-photon coherence length, coalescence and anti-coalescence are observed. The obtained results highlight the effects of a linear optical element on fourth-order interference.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404255)the Doctor Foundation of Education Ministry of China(Grant No.20130201120013)
文摘The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by em- ploying two-photon interference in Feynman's path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra.
基金supported by the National Natural Science Foundation of China(Grant No.11404255)the Doctor Foundation of Education Ministry of China(Grant No.20130201120013)+1 种基金the Programme of Introducing Talents of Discipline to Universities,China(Grant No.B14040)the Fundamental Research Funds for the Central Universities,China
文摘The second-order temporal interference of classical and nonclassical light at an asymmetrical beam splitter is discussed based on two-photon interference in Feynman's path integral theory. The visibility of the second-order interference pattern is determined by the properties of the superposed light beams, the ratio between the intensities of these two light beams, and the reflectivity of the asymmetrical beam splitter. Some requirements about the asymmetrical beam splitter have to be satisfied in order to ensure that the visibility of the second-order interference pattern of nonclassical light beams exceeds the classical limit. The visibility of the second-order interference pattern of photons emitted by two independent single-photon sources is independent of the ratio between the intensities. These conclusions are important for the researches and applications in quantum optics and quantum information when an asymmetrical beam splitter is employed.
基金Project supported by the Key Research and Development Project of Shaanxi Province,China(Grant No.2019ZDLGY09-08)the Open Fund of MOE Key Laboratory of Weak-Light Nonlinear Photonics,China(Grant No.OS19-2)the Fundamental Research Funds for the Central Universities,China
文摘The second-order interference of two independent photons with different spectra in a Shih-Alley/Hong-Ou-Mandel interferometer is studied in Feynman's path integral theory. There is a second-order interference pattern for photons with different spectra if the photons are indistinguishable for the employed detection system. The conditions to observe the second-order temporal beating with photons of different spectra are analyzed. The influence of the response time of the detection system on the observed second-order interference pattern is also discussed. It is a direct result of that measurement in quantum mechanics is dependent on the employed measuring apparatus. The results are helpful to understand the physics of two-photon interference in different schemes.
基金The project supported in part by National Natural Science Foundation of China unde.r Grant Nos. 10634060, 10575040, and 90503010 Acknowledgments The authors would like to thank professor Ying WU for helpful discussion and his encouragement.
文摘We theoretically investigate the features of two-photon absorption in a coherently driven four-level atomic system with closed-loop configuration. It is found that two-photon absorption can be completely suppressed just by properly adjusting the relative phase of four coherent low-intensity driving fields and the atomic system becomes trans- parent against two-photon absorption. From a physical point of view, we explicitly explain these results in terms of quantum interference induced by two different two-photon excitation channels.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92150105,11834004,12227807,and 12241407)the Science and Technology Commission of Shanghai Municipality (Grant No.21ZR1420100)。
文摘Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.
基金supported by National Natural Science Foundation of China under Grant Nos.10774042,10474118,and 1047200the National Fundamental Research Program of China under Grant No.2005CB724502
文摘A scheme has been proposed for generating the macroscopic entanglement between the mesoscopic squeezed vacuum states and mesoscopic coherent states by considering both the two-photon interaction and the single photon interaction of N two-level atoms in cavities with high quality factor assisted by a strong driving field. Moreover, we derive the dissipative interaction models for single photon interaction and two-photon interaction, respectively. The corresponding analytical expressions of the fidelities can be given. Our scheme can be realized in the current techniques on the cavity QED.
基金supported by the Shanxi Key Research and Development Project,China(Grant No.2019ZDLGY09-08)Shanxi Nature and Science Basic Research Project,China(Grant No.2019JLP-18)Open fund of MOE Key Laboratory of Weak-Light Nonlinear Photonics(Grant No.OS19-2)。
文摘Superbunching pseudothermal light has important applications in studying the second-and higher-order interference of light in quantum optics.Unlike the photon statistics of thermal or pseudothermal light is well understood,the photon statistics of superbunching pseudothermal light has not been studied yet.In this paper,we will employ single-photon detectors to measure the photon statistics of superbunching pseudothermal light and calculate the degree of second-order coherence.It is found that the larger the value of the degree of second-order coherence of superbunching pseudothermal light is,the more the measured photon distribution deviates from the one of thermal or pseudothermal light in the tail part.The results are helpful to understand the physics of two-photon superbunching with classical light.It is suggested that superbunching pseudothermal light can be employed to generate non-Rayleigh temporal speckles.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFB0405202)the Major Program of the National Natural Science Foundation of China(Grant No.61690221)+1 种基金the Key Program of the National Natural Science Foundation of China(Grant No.11434016)the National Natural Science Foundation of China(Grant Nos.11574384,11674386,and 11774277)
文摘We utilized a set of fused silica thin plates to broaden the spectrum of 1kHz,30 fs Ti:sapphire amplified laser pulses to an octave.Following the compression by chirped mirror pairs,the generated few-cycle pulses were focused onto an argon filled gas cell.We detected high order harmonics corresponding to a train of 209 as pulses,characterized by the reconstruction of attosecond beating by interference of two-photon transition(RABITT)technique.Compared with the conventional attosecond pulse trains,the broad harmonics in such pulse trains cover more energy range,so it is more efficient in studying some typical cases,such as resonances,with frequency resolved RABITT.As the solid thin plates can support high power supercontinuum generation,it is feasible to tailor the spectrum to have different central wavelength and spectral width,which will make the RABITT source work in different applications.
基金This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0303700 and 2019YFA0308700)the National Natural Science Foundation of China(NSFC)(Nos.11874212,11890704,62035008,12004175,and 62175101)the Natural Science Foundation of Jiangsu Province(No.BK20200311)。
文摘Vector vortex beams(VVBs) have attracted significant attention in both classical and quantum optics. Liquid crystal(LC),beyond its applications in information display, has emerged as a versatile tool for manipulating VVBs. In this review, we focus on the functions and applications of typical LC devices in recent studies on controlling the space-variant polarized vortex light. Manipulation of VVBs through patterned nematic LC optical elements, patterned cholesteric LC optical elements, self-assembled defects, and LC spatial light modulators is discussed separately. Moreover, LC-based novel optical applications in the field of quantum information are reviewed.
基金supported by National Natural Science Foundation of China(no.51675503,61475149,51405464,61675190 and 51605463)the Fundamental Research Funds for the Central Universities(no.WK2480000002)+2 种基金the China Postdoctoral Science Foundation(no.2016M590578 and 2016M602027)the Chinese Academy of Sciences Instrument Project(YZ201566)the‘Chinese Thousand Young Talents Program’.
文摘Optical vortices,a type of structured beam with helical phase wavefronts and‘doughnut’-shaped intensity distributions,have been used to fabricate chiral structures in metals and spiral patterns in anisotropic polarization-dependent azobenzene polymers.However,in isotropic polymers,the fabricated microstructures are typically confined to non-chiral cylindrical geometry due to the two-dimensional‘doughnut’-shaped intensity profile of the optical vortices.Here we develop a powerful strategy to realize chiral microstructures in isotropic material by coaxial interference of a vortex beam and a plane wave,which produces threedimensional(3D)spiral optical fields.These coaxial interference beams are generated by designing contrivable holograms consisting of an azimuthal phase and an equiphase loaded on a liquid-crystal spatial light modulator.In isotropic polymers,3D chiral microstructures are achieved under illumination using coaxial interference femtosecond laser beams with their chirality controlled by the topological charge.Our further investigation reveals that the spiral lobes and chirality are caused by interfering patterns and helical phase wavefronts,respectively.This technique is simple,stable and easy to perform,and it offers broad applications in optical tweezers,optical communications and fast metamaterial fabrication.