In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM) is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A...In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM) is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A narrow peak of the fidelity is observed at the level-crossing point,which does not appear at the avoided-crossing point.Therefore fidelity is perfectly suited for detecting the level-crossing point in the energy spectrum.展开更多
Completely solving the dissipative dynamics of nonlinear Jaynes-Cumming model is a very difficult task.In our recent work (Phys. Lett. A284 (2001) 156), we just obtained analytical results of the field dissipative dyn...Completely solving the dissipative dynamics of nonlinear Jaynes-Cumming model is a very difficult task.In our recent work (Phys. Lett. A284 (2001) 156), we just obtained analytical results of the field dissipative dynamicsof the nonlinear JCM. In the present paper, employing the perturbative expansion of master equation, we obtain thedensity operator of the system (field +atom). The coherence losses of the system and of the atom are investigated whentwo-photon process is involved. We also study the effect of different atomic initial states and the influence of the fieldamplitude on the atomic coherence loss.展开更多
In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, includin...In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 1097602/A06)
文摘In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM) is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A narrow peak of the fidelity is observed at the level-crossing point,which does not appear at the avoided-crossing point.Therefore fidelity is perfectly suited for detecting the level-crossing point in the energy spectrum.
基金The project supported by National Natural Science Foundation of China under Grant No.10305002
文摘Completely solving the dissipative dynamics of nonlinear Jaynes-Cumming model is a very difficult task.In our recent work (Phys. Lett. A284 (2001) 156), we just obtained analytical results of the field dissipative dynamicsof the nonlinear JCM. In the present paper, employing the perturbative expansion of master equation, we obtain thedensity operator of the system (field +atom). The coherence losses of the system and of the atom are investigated whentwo-photon process is involved. We also study the effect of different atomic initial states and the influence of the fieldamplitude on the atomic coherence loss.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10374025)the Natural Science Foundation of Hunan Province of China (Grant No. 07JJ3013)the Education Ministry of Hunan Province of China (Grant No. 06A038)
文摘In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.