The effect of ion current density of argon plasma on target sputtering in magnetron sputtering process was investigated. Using home-made ion probe with computer-based data acquisition system, the ion current density a...The effect of ion current density of argon plasma on target sputtering in magnetron sputtering process was investigated. Using home-made ion probe with computer-based data acquisition system, the ion current density as functions of discharge power, gas pressure and positions was measured. A double-hump shape was found in ion current density curve after the analysis of the effects of power and pressure. The data demonstrate that ion current density increases with the increase in gas pressure in spite of slightly at the double-hump site, sharply at wave-trough and side positions. Simultaneously, the ion current density increases upon increase in power. Es- pecially, the ion current density steeply increases at the double-hump site. The highest energy of the secondary electrons arising from Larmor precession was found at the double-hump position, which results in high ion density. The target was etched seriously at the double-hump position due to the high ion density there. The data indicates that the increase in power can lead to a high sputtering speed rate.展开更多
This article mainly deals with the preparation and properties of PZTthin films. A new type of Metal-Me tal Oxide composite target was developed. Relating factors have been discussed. The electrical and optical propert...This article mainly deals with the preparation and properties of PZTthin films. A new type of Metal-Me tal Oxide composite target was developed. Relating factors have been discussed. The electrical and optical properties of PZT thin films have also been studied.展开更多
Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing...Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing. The effects of the annealing on the structure and phase transition property of VO2 were discussed. X-ray photoelectron spectroscopy, X-ray diffraction tech- nique and Fourier transform infrared spectroscopy were employed to study the phase composition and structure of the thin films. The resistance-temperature property was measured. The results show that VO2 thin film is obtained after annealed at 320 ℃ for 3 h, its phase transition tempera- ture is 56 ℃, and the resistance changes by more than 2 orders. The vanadium oxide thin films are applicable in thermochromic smart windows, and the deposition and annealing process is compatible with micro electromechanical system process.展开更多
IZO films were deposited onto PET substrate at room temperature with the inclined opposite target type DC magnetron sputtering equipment,in which a sintered oxide IZO target(doped with 10% ZnO,packing density of 99.99...IZO films were deposited onto PET substrate at room temperature with the inclined opposite target type DC magnetron sputtering equipment,in which a sintered oxide IZO target(doped with 10% ZnO,packing density of 99.99%) was used.The effects of total sputtering pressure and film thickness on IZO films properties were studied.All the films produced at room temperature have a amorphous structure,irrespective of the total sputtering pressure and film thickness.A resistivity of the order of 10-4 Ωcm was obtained for IZO films deposited at lower pressure(film thickness of 190 nm).The resistivity of IZO films deposited at room temperature depends on film thickness and shows a minimum at a thickness of 530 nm.展开更多
A small unbalanced maglletron atom source with multipole cusp magnetic field anode is described. The co-axial magnetron principle is extended to the circularplanar magnetron atom source, which raises the efficiency of...A small unbalanced maglletron atom source with multipole cusp magnetic field anode is described. The co-axial magnetron principle is extended to the circularplanar magnetron atom source, which raises the efficiency of sputtering target areaup to 60%. The multipole magnetic field is put in the anode, which makes theunbalanced magnetron atomsource run in a higher discharge current at a lower arcvoltage condition. Meanwhile, the sputtering atoms through out the anode can beionized partially, because the electron reaching the anode have to suffer multiplecollisions in order to advallce across the multipole magnetic field lines in the anode,which enhances the chemical reactivity of the secting atoms in film growth andimprove the property of film depositing.展开更多
Lithium-metal batteries are regarded as the"Holy Grail"of next-generation batteries.However,lithium dendrite and anode volume expansion in cycles seriously hinders lithium-metal battery applications.Herein,w...Lithium-metal batteries are regarded as the"Holy Grail"of next-generation batteries.However,lithium dendrite and anode volume expansion in cycles seriously hinders lithium-metal battery applications.Herein,we propose a precise and efficient strategy for stabilizing lithium-metal batteries via a lithiophilic Ag-modified Cu current host(Li@CuM/Ag).By applying the magnetron sputtering method,the lithiophilic silver layer can be anchored homogeneously on the Cu mesh.The lithiophilic silver layer effectively guides uniform Li deposition in the 3D host and realizes spatial control over Li nucleation.In addition,a dendrite-free lithium anode is successfully realized,which has been proven by in situ optical dynamic tests and Li deposition simulations.The symmetrical cell can maintain a low overpotential(230 mV)and long cycle life(90 h)at a large current of 10 mA cm^(-2)for a plating amount of 3 mAh cm^(-2).Furthermore,Li@CuM/Ag||LiCoO2 cells exhibited a high-capacity retention rate(86.39%)after 150 cycles at 2 C.Lithiophilic hosts based on magnetron sputtering provide a feasible strategy for applications of lithium-metal batteries.展开更多
Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Partic...Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.展开更多
Introduction During magnetron sputtering process,the common structure of cathode target is planar target and cylindrical rotating target.In this study,cylindrical rotating target is used and two kinds of cathode targe...Introduction During magnetron sputtering process,the common structure of cathode target is planar target and cylindrical rotating target.In this study,cylindrical rotating target is used and two kinds of cathode targets were investigated by COMSOL Multiphysics software(The official network of COMSOL Multiphysics software.https://uk.comsol.com/).We will elucidate the difference between the two types of cathode target and determine the type of cathode target used in the final experiment.The system configuration We explore the plasma distribution in the radio frequency cavity,so the simulation process was divided into two steps:building RF cavity model and setting up plasma discharge parameters.The main part of the model included the radio frequency cavity substrate(divided into two tube parts and middle ellipsoid part),the cathode and the magnet.And the plasma discharge parameters are as follows:Ar gas was used with 1.5 Pa;magnetic field strength of iron core was set to 1000 Gs;the applied voltage of cathode was set to-160 V;and anode was set to 0 V.Conclusion For the long cathode target and the short cathode target,the main difference is the electric field distribution.Because the electric field lines are denser for the long cathode target,the electric field intensity is stronger,and then the initial energy obtained by electrons is higher.During the plasma discharge process,because of the high electron energy,the plasma density produced is more than the simulation of the short cathode target.And under the same simulation time,the residual energy of electrons is more for the long cathode target,which is the reason for the higher electron temperature.From the previous experimental experience,we know that the film quality formed by higher electron energy is better.The simulation in this work shows that the electron energy corresponding to the long cathode target is higher than that of the short cathode target,so we choose the long cathode target as the experimental target in the subsequent coating experiments.展开更多
Transparent conductive oxide ZnSnO3 films were prepared by radio-frequency magnetron sputtering from powder targets and were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron ...Transparent conductive oxide ZnSnO3 films were prepared by radio-frequency magnetron sputtering from powder targets and were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscopy, surface profile, UV-Vis spectroscopy, and Hall effect. The structures of the films were either amorphous or nanocrystalline depending on sputtering parameters including deposition time, target power, chamber pressure, and the target-substrate separation. The average transmittance of the ZnSnO3 films within the visible wavelength was approximately 80% and the resistivity of the ZnSnO3 films was in the range of 10^-3-10^-4 Ω cm. The structural, optical, and electrical properties of the ZnSnO3 films could be adjusted and regulated by optimizing the sputtering process, allowing materials with specific properties to be designed.展开更多
基于WO_(3)-NiO体系的电致变色(EC)玻璃具有优异的可见与红外的主动调控特性和节能效果,在建筑、新能源汽车等产业的应用得到越来越多的关注。生产效率与制造成本等因素的限制,使得大面积WO_(3)-NiO电致变色玻璃未规模化地投入市场。相...基于WO_(3)-NiO体系的电致变色(EC)玻璃具有优异的可见与红外的主动调控特性和节能效果,在建筑、新能源汽车等产业的应用得到越来越多的关注。生产效率与制造成本等因素的限制,使得大面积WO_(3)-NiO电致变色玻璃未规模化地投入市场。相比于在单一玻璃表面采用膜层堆栈方式制备多层膜结构的电致变色器件,以高性能锂离子胶膜为中间层,将磁控溅射沉积的Glass/TCO/WO_(3)以及Glass/TCO/NiO通过层压的方式组装成夹层式器件是一种可行地实现电致变色玻璃大面积、低成本规模化生产的技术手段,正逐渐成为器件制备技术的主流。然而,面向于大面积夹层式WO_(3)-NiO电致变色玻璃的低成本制造和新的应用需求,仍有必要开展从材料到器件的体系化研究。在材料端,开发兼容现有镀膜产线的高质量EC氧化物陶瓷靶材制备技术,高性能WO、NiO薄膜成分、结构、性能与色彩的调控技术,具备高离子电导率、高粘结强度、高热稳定、高透明且易于实现大面积规模化生产的锂离子胶膜材料及其制备技术等。在器件端,开发与现有玻璃产业兼容的大尺寸器件的层压工艺,弧型器件的制备技术,具备更高效节能且能呈现中性着褪色的器件技术等。针对上述挑战,综述了国内外相关研究团队在上述领域的研究进展,结果表明,可以制备出满足高性能电致变色薄膜沉积的EC氧化物陶瓷靶材,通过调节磁控溅射工艺参数可以有效实现对薄膜成份、结构以及性能调控,开发出满足层压工艺的、具有高离子电导率(1.51×10^(-4)S·cm^(-1))的固态聚合物电解质,最终利用商用高压釜实现30 cm×30 cm WO_(3)-NiO电致变色器件高质量制备。展开更多
文摘The effect of ion current density of argon plasma on target sputtering in magnetron sputtering process was investigated. Using home-made ion probe with computer-based data acquisition system, the ion current density as functions of discharge power, gas pressure and positions was measured. A double-hump shape was found in ion current density curve after the analysis of the effects of power and pressure. The data demonstrate that ion current density increases with the increase in gas pressure in spite of slightly at the double-hump site, sharply at wave-trough and side positions. Simultaneously, the ion current density increases upon increase in power. Es- pecially, the ion current density steeply increases at the double-hump site. The highest energy of the secondary electrons arising from Larmor precession was found at the double-hump position, which results in high ion density. The target was etched seriously at the double-hump position due to the high ion density there. The data indicates that the increase in power can lead to a high sputtering speed rate.
文摘This article mainly deals with the preparation and properties of PZTthin films. A new type of Metal-Me tal Oxide composite target was developed. Relating factors have been discussed. The electrical and optical properties of PZT thin films have also been studied.
基金Natural Science Foundation of Tianjin(No.043100811)the Key Program of Natural Science Foundation of Tianjin(No.08JCZDJC17500)
文摘Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing. The effects of the annealing on the structure and phase transition property of VO2 were discussed. X-ray photoelectron spectroscopy, X-ray diffraction tech- nique and Fourier transform infrared spectroscopy were employed to study the phase composition and structure of the thin films. The resistance-temperature property was measured. The results show that VO2 thin film is obtained after annealed at 320 ℃ for 3 h, its phase transition tempera- ture is 56 ℃, and the resistance changes by more than 2 orders. The vanadium oxide thin films are applicable in thermochromic smart windows, and the deposition and annealing process is compatible with micro electromechanical system process.
基金supported by the Ministry of Education,Science Technology (MEST) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional Innovation
文摘IZO films were deposited onto PET substrate at room temperature with the inclined opposite target type DC magnetron sputtering equipment,in which a sintered oxide IZO target(doped with 10% ZnO,packing density of 99.99%) was used.The effects of total sputtering pressure and film thickness on IZO films properties were studied.All the films produced at room temperature have a amorphous structure,irrespective of the total sputtering pressure and film thickness.A resistivity of the order of 10-4 Ωcm was obtained for IZO films deposited at lower pressure(film thickness of 190 nm).The resistivity of IZO films deposited at room temperature depends on film thickness and shows a minimum at a thickness of 530 nm.
文摘A small unbalanced maglletron atom source with multipole cusp magnetic field anode is described. The co-axial magnetron principle is extended to the circularplanar magnetron atom source, which raises the efficiency of sputtering target areaup to 60%. The multipole magnetic field is put in the anode, which makes theunbalanced magnetron atomsource run in a higher discharge current at a lower arcvoltage condition. Meanwhile, the sputtering atoms through out the anode can beionized partially, because the electron reaching the anode have to suffer multiplecollisions in order to advallce across the multipole magnetic field lines in the anode,which enhances the chemical reactivity of the secting atoms in film growth andimprove the property of film depositing.
基金supported by the National Natural Science Foundation of China(U1802256,21875107)the Basic Research Program of Frontier Leading Technologies in Jiangsu Province(BK20202008)+1 种基金the Free Exploration Basic Research Project in Shenzhen Virtual University Park(2021Szvup062)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Lithium-metal batteries are regarded as the"Holy Grail"of next-generation batteries.However,lithium dendrite and anode volume expansion in cycles seriously hinders lithium-metal battery applications.Herein,we propose a precise and efficient strategy for stabilizing lithium-metal batteries via a lithiophilic Ag-modified Cu current host(Li@CuM/Ag).By applying the magnetron sputtering method,the lithiophilic silver layer can be anchored homogeneously on the Cu mesh.The lithiophilic silver layer effectively guides uniform Li deposition in the 3D host and realizes spatial control over Li nucleation.In addition,a dendrite-free lithium anode is successfully realized,which has been proven by in situ optical dynamic tests and Li deposition simulations.The symmetrical cell can maintain a low overpotential(230 mV)and long cycle life(90 h)at a large current of 10 mA cm^(-2)for a plating amount of 3 mAh cm^(-2).Furthermore,Li@CuM/Ag||LiCoO2 cells exhibited a high-capacity retention rate(86.39%)after 150 cycles at 2 C.Lithiophilic hosts based on magnetron sputtering provide a feasible strategy for applications of lithium-metal batteries.
基金supported by the National Natural Science Foundation of China under Grant Nos.51271191,51571205 and 51401209
文摘Polycrystalline Cr2AlC coatings were prepared on M38G superalloy using a two-step method consisting of magnetron sputtering from Cr-Al-C composite targets at room temperature and subsequent annealing at 620 ℃. Particularly, various targets synthesized by hot pressing mixture of Cr, Al, and C powders at 650-1000 ℃ were used. It was found that regardless of the phase compositions and density of the com- posite targets, when the molar ratio of Cr:Al:C in the starting materials was 2:1:1, phase-pure crystalline Cr2AlC coatings were prepared by magnetron sputtering and post crystallization. The Cr2AIC coatings were dense and crack-free and had a duplex structure. The adhesion strength of the coating deposited on M38G superalloy from the 800 ℃ hot-pressed target and then annealed at 620 ℃ for 20 h in Ar exceeded 82 ± 6 MPa, while its hardness was 12 ± 3 GPa.
基金provided by Institute of High Energy Physics(Grant No.Y85461GOU2)
文摘Introduction During magnetron sputtering process,the common structure of cathode target is planar target and cylindrical rotating target.In this study,cylindrical rotating target is used and two kinds of cathode targets were investigated by COMSOL Multiphysics software(The official network of COMSOL Multiphysics software.https://uk.comsol.com/).We will elucidate the difference between the two types of cathode target and determine the type of cathode target used in the final experiment.The system configuration We explore the plasma distribution in the radio frequency cavity,so the simulation process was divided into two steps:building RF cavity model and setting up plasma discharge parameters.The main part of the model included the radio frequency cavity substrate(divided into two tube parts and middle ellipsoid part),the cathode and the magnet.And the plasma discharge parameters are as follows:Ar gas was used with 1.5 Pa;magnetic field strength of iron core was set to 1000 Gs;the applied voltage of cathode was set to-160 V;and anode was set to 0 V.Conclusion For the long cathode target and the short cathode target,the main difference is the electric field distribution.Because the electric field lines are denser for the long cathode target,the electric field intensity is stronger,and then the initial energy obtained by electrons is higher.During the plasma discharge process,because of the high electron energy,the plasma density produced is more than the simulation of the short cathode target.And under the same simulation time,the residual energy of electrons is more for the long cathode target,which is the reason for the higher electron temperature.From the previous experimental experience,we know that the film quality formed by higher electron energy is better.The simulation in this work shows that the electron energy corresponding to the long cathode target is higher than that of the short cathode target,so we choose the long cathode target as the experimental target in the subsequent coating experiments.
基金financially supported by the National Natural Science Foundation of China (Nos. 51372109 and 51502126)the Foundation of Educational Department of Liaoning (No. L2015260)the Open Subject of Key Laboratory Liaoning Province (No. USTLKFSY201501)
文摘Transparent conductive oxide ZnSnO3 films were prepared by radio-frequency magnetron sputtering from powder targets and were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscopy, surface profile, UV-Vis spectroscopy, and Hall effect. The structures of the films were either amorphous or nanocrystalline depending on sputtering parameters including deposition time, target power, chamber pressure, and the target-substrate separation. The average transmittance of the ZnSnO3 films within the visible wavelength was approximately 80% and the resistivity of the ZnSnO3 films was in the range of 10^-3-10^-4 Ω cm. The structural, optical, and electrical properties of the ZnSnO3 films could be adjusted and regulated by optimizing the sputtering process, allowing materials with specific properties to be designed.
文摘基于WO_(3)-NiO体系的电致变色(EC)玻璃具有优异的可见与红外的主动调控特性和节能效果,在建筑、新能源汽车等产业的应用得到越来越多的关注。生产效率与制造成本等因素的限制,使得大面积WO_(3)-NiO电致变色玻璃未规模化地投入市场。相比于在单一玻璃表面采用膜层堆栈方式制备多层膜结构的电致变色器件,以高性能锂离子胶膜为中间层,将磁控溅射沉积的Glass/TCO/WO_(3)以及Glass/TCO/NiO通过层压的方式组装成夹层式器件是一种可行地实现电致变色玻璃大面积、低成本规模化生产的技术手段,正逐渐成为器件制备技术的主流。然而,面向于大面积夹层式WO_(3)-NiO电致变色玻璃的低成本制造和新的应用需求,仍有必要开展从材料到器件的体系化研究。在材料端,开发兼容现有镀膜产线的高质量EC氧化物陶瓷靶材制备技术,高性能WO、NiO薄膜成分、结构、性能与色彩的调控技术,具备高离子电导率、高粘结强度、高热稳定、高透明且易于实现大面积规模化生产的锂离子胶膜材料及其制备技术等。在器件端,开发与现有玻璃产业兼容的大尺寸器件的层压工艺,弧型器件的制备技术,具备更高效节能且能呈现中性着褪色的器件技术等。针对上述挑战,综述了国内外相关研究团队在上述领域的研究进展,结果表明,可以制备出满足高性能电致变色薄膜沉积的EC氧化物陶瓷靶材,通过调节磁控溅射工艺参数可以有效实现对薄膜成份、结构以及性能调控,开发出满足层压工艺的、具有高离子电导率(1.51×10^(-4)S·cm^(-1))的固态聚合物电解质,最终利用商用高压釜实现30 cm×30 cm WO_(3)-NiO电致变色器件高质量制备。