Based on the analysis of periodic equivalent control force of rolling missiles with x-rudder, the guidance loop model with direction error is established and the relationship between direction error and miss distance ...Based on the analysis of periodic equivalent control force of rolling missiles with x-rudder, the guidance loop model with direction error is established and the relationship between direction error and miss distance is analyzed. Results show that the miss distance is zero or a constant or infinite, and it is always zero when the real parts of system matrix eigenvalues decided by direction error are both positive values in an ideal system, in which all the lags are neglected. However, the miss distance gradually increases with the increase of the direction error and its variation is small when direction error is not more than 5° in the system, in which seeker lag and missile body lag are considered.展开更多
辛周期模态分解(symplectic period mode decomposition, SPMD)方法可以准确地提取周期脉冲分量,是一种有效的滚动轴承单一故障诊断方法。但在滚动轴承出现复合故障时,尤其是强背景噪声下,周期脉冲信号往往较微弱,使得SPMD难以提取出不...辛周期模态分解(symplectic period mode decomposition, SPMD)方法可以准确地提取周期脉冲分量,是一种有效的滚动轴承单一故障诊断方法。但在滚动轴承出现复合故障时,尤其是强背景噪声下,周期脉冲信号往往较微弱,使得SPMD难以提取出不同周期的脉冲分量,进而限制了其在复合故障诊断中的应用。对此,提出了改进的辛周期模态分解(improved symplectic period mode decomposition, ISPMD)方法。该方法首先采用求差增强技术和最小噪声幅值反卷积相结合的方法对信号进行降噪,增强周期脉冲,以准确估计故障周期;然后构造对应的周期截断矩阵,并通过辛几何相似变换和周期冲击强度获得辛几何周期分量;最后对残差信号采用迭代分解,进而得到不同周期的辛几何周期分量。试验结果表明,ISPMD能准确提取出周期脉冲分量,是一种有效的滚动轴承复合故障诊断方法。展开更多
Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distri...Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distributed-nonlinear autoregressive with exogenous inputs correlation model(STD-NARXCM)to spatial temporal distributed-autoregressive with exogenous inputs correlation model(STD-ARXCM)in working point is established.Secondly,a new coordinated time-sharing control architecture in different time periods is proposed,which is along the length of the SRRF to improve the control performance.Thirdly,a hybrid control algorithm of expert-fuzzy is proposed to improve the dynamic of the temperature and the heating rate during time period 0 to t_(1).A hybrid control algorithm of expert-fuzzy-PID is proposed to enhance the control accuracy and the heating rate during time period t_(1) to t_(2).A hybrid control algorithm of expert-active disturbance rejection control(ADRC)is proposed to boost the anti-interference and the heating rate during time period t_(2) to t_(3).Finally,the experimental results show that the coordinated time-sharing algorithm can meet the process requirements,the maximum deviation of temperature value is 8-13.5℃.展开更多
文摘Based on the analysis of periodic equivalent control force of rolling missiles with x-rudder, the guidance loop model with direction error is established and the relationship between direction error and miss distance is analyzed. Results show that the miss distance is zero or a constant or infinite, and it is always zero when the real parts of system matrix eigenvalues decided by direction error are both positive values in an ideal system, in which all the lags are neglected. However, the miss distance gradually increases with the increase of the direction error and its variation is small when direction error is not more than 5° in the system, in which seeker lag and missile body lag are considered.
文摘辛周期模态分解(symplectic period mode decomposition, SPMD)方法可以准确地提取周期脉冲分量,是一种有效的滚动轴承单一故障诊断方法。但在滚动轴承出现复合故障时,尤其是强背景噪声下,周期脉冲信号往往较微弱,使得SPMD难以提取出不同周期的脉冲分量,进而限制了其在复合故障诊断中的应用。对此,提出了改进的辛周期模态分解(improved symplectic period mode decomposition, ISPMD)方法。该方法首先采用求差增强技术和最小噪声幅值反卷积相结合的方法对信号进行降噪,增强周期脉冲,以准确估计故障周期;然后构造对应的周期截断矩阵,并通过辛几何相似变换和周期冲击强度获得辛几何周期分量;最后对残差信号采用迭代分解,进而得到不同周期的辛几何周期分量。试验结果表明,ISPMD能准确提取出周期脉冲分量,是一种有效的滚动轴承复合故障诊断方法。
基金This work was supported by the National Natural Science Foundation of China(Nos.62173032 and 62003038).
文摘Accurate control of slab temperature and heating rate is an important significance to improve product performance and reduce carbon emissions for steel rolling reheating furnace(SRRF).Firstly,a spatial temporal distributed-nonlinear autoregressive with exogenous inputs correlation model(STD-NARXCM)to spatial temporal distributed-autoregressive with exogenous inputs correlation model(STD-ARXCM)in working point is established.Secondly,a new coordinated time-sharing control architecture in different time periods is proposed,which is along the length of the SRRF to improve the control performance.Thirdly,a hybrid control algorithm of expert-fuzzy is proposed to improve the dynamic of the temperature and the heating rate during time period 0 to t_(1).A hybrid control algorithm of expert-fuzzy-PID is proposed to enhance the control accuracy and the heating rate during time period t_(1) to t_(2).A hybrid control algorithm of expert-active disturbance rejection control(ADRC)is proposed to boost the anti-interference and the heating rate during time period t_(2) to t_(3).Finally,the experimental results show that the coordinated time-sharing algorithm can meet the process requirements,the maximum deviation of temperature value is 8-13.5℃.