In order to achieve a lower consumed energy, the performance of a new type of rotating volumetric pump with two profiled rotors (variant I) which is compared with a centrifugal pump (variant II) is presented. The...In order to achieve a lower consumed energy, the performance of a new type of rotating volumetric pump with two profiled rotors (variant I) which is compared with a centrifugal pump (variant II) is presented. The analysis regarding the same flow rate of transported liquid and the same pressure increases points out the conduct of the system at the variation of the key operating parameters. The actual driving power of the rotating volumetric pump is higher stating that is more advantageous in operation. The effective efficiency of the system is improved due to the original constructive solution.展开更多
As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical sys...As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.展开更多
The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s...The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s angle of attack and stretching the chord length along the span of the rotor.Several test cases were run using the BAT’s algorithm.The BAT code’s twisting,stretching,and mesh reconstruction capabilities proved to be able to handle reasonably large geometric alterations to a provided input rotor geometry.The test examples showed that the toolbox’s algorithm could handle any stretching of the blade’s chord as long as the blade remained within the original bounds of the unaltered mesh.The algorithm appears to fail when the net twist angle applied the geometry exceeds approximately 30 degrees,however this limitation is dependent on the initial geometry and other input parameters.Overall,the algorithm is a very powerful tool for automating a design optimization procedure.展开更多
In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies...In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions.展开更多
The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbin...The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).展开更多
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the propos...This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.展开更多
For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of...For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.展开更多
The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th...The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.展开更多
The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of...The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.展开更多
The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial fo...The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.展开更多
The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to investigate the effects of the curved rotors on the stage performance and the aerodynamic inter...The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to investigate the effects of the curved rotors on the stage performance and the aerodynamic interaction between the blade rows. The results show that, compared to the compressor with unurved rotors, the compressor under scrutiny acquires remarkable increases in efficiency with significantly reduced amplitudes of the time-dependent fluctuation. The amplitude of the pressure fluctuation around the stator leading edge decreases at both endwalls, but increases at the mid-span in the curved rotors. The pressure fluctuation near the stator leading edge, therefore, becomes more uniform in the radial direction of this compressor. Except for the leading edge area, the pressure fluctuatinn amplitude declines remarkably in the tip region of stator surface downstream of the curved rotor, but hardly changes in the middle and at the hub.展开更多
In this paper, an identification method to estimate the unbalances is introduced, which is based on the boundary element method (BEM). By using the vibration response measured at some points on the flexible rotor the ...In this paper, an identification method to estimate the unbalances is introduced, which is based on the boundary element method (BEM). By using the vibration response measured at some points on the flexible rotor the unbalances can be identified conveniently. Therefore, the rotor can be balanced without test runs.展开更多
A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to a...A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled ( first critical speed region 37% , second critical speed region 42% ). To reflect advantages of optimi- zing strategy presented and validate the intelligent optimization control technology, detailed experi- ments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration.展开更多
The nonlinear properties of rotating machinery vibration signals are presented. The relationship between faults and quadratic phase coupling is discussed. The mechanism that gives rise to quadratic phase coupling is a...The nonlinear properties of rotating machinery vibration signals are presented. The relationship between faults and quadratic phase coupling is discussed. The mechanism that gives rise to quadratic phase coupling is analyzed, and the coupling models are summarized. As a result, higher order spectra analysis is introduced into fault diagnosis of rotors. A brief review of the properties of higher order spectra is presented. Furthermore, the bicoherence spectrum is employed to extract the features that signify the machinery condition. Experiments show that bicoherence spectrum patterns of different faults are quite different, so it is proposed to identify the faults in rotors.展开更多
A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using ...A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.展开更多
The SiCp/Al-alloy composite front brake rotors designed for Shanghai Santana cars were prepared by semi-solid stirring+liquid forging process. The composite brake rotors were subjected to dynamometer tests on a SCHENC...The SiCp/Al-alloy composite front brake rotors designed for Shanghai Santana cars were prepared by semi-solid stirring+liquid forging process. The composite brake rotors were subjected to dynamometer tests on a SCHENCK brake testing system, referring to TL110 standard of VOLKSWAGEN Co. The friction coefficient and thermal response during fade testing and the wear performance of the composite rotors were studied as the functions of various parameters such as braking pressures, initial speeds, initial temperatures, torque and decelerations, and were compared with those of conventional cast iron rotors. The results show that the properties of the composite rotors can achieve the requirements of commercial cast iron rotors. The results also show that the friction coefficients of the composite rotors under different braking conditions are within the deviation band specified by the TL110 standard, and the temperature rise of composite rotors is lower than that of cast iron rotors at the end of each fade stop. The wear resistance of composite rotors is higher than that of cast iron rotors. The friction mechanism and wear mechanism were analyzed.展开更多
The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 4...The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of ?2.3。, wind speeds of 10, 15, 24 m/s and yaw angles of 15。, 30。 and 45。. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm, a pitch angle of 3。, a wind speed of 5 m/s and yaw angles of 10。and 30。. The computed loads are compared to the loads measured from pressure measurement.展开更多
A sudden increase of vibration amplitude with no foreboding often results in an abrupt breakdown of a mechanical system.The catastrophe of vibration state of a faulty rotor is a typical nonlinear phenomenon,and very d...A sudden increase of vibration amplitude with no foreboding often results in an abrupt breakdown of a mechanical system.The catastrophe of vibration state of a faulty rotor is a typical nonlinear phenomenon,and very difficult to be described and predicted with linear vibration theory.On the basis of nonlinear vibration and catastrophe theory,fhe eatastrophe of the vibration amplitude of the faulty rotor is described;a way to predict its emergence is developed.展开更多
文摘In order to achieve a lower consumed energy, the performance of a new type of rotating volumetric pump with two profiled rotors (variant I) which is compared with a centrifugal pump (variant II) is presented. The analysis regarding the same flow rate of transported liquid and the same pressure increases points out the conduct of the system at the variation of the key operating parameters. The actual driving power of the rotating volumetric pump is higher stating that is more advantageous in operation. The effective efficiency of the system is improved due to the original constructive solution.
基金Supported by National Natural Science Foundation of China (Grant No.52275537)Nanjing Major Scientific and Technological Project of China (Grant No.202209011)。
文摘As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.
基金NASA Glenn Research Center,Award Number,GRT00060658NSF IUCRC Smart Vehicle Concept Research Seed Program,No Award Number Provided.
文摘The Blade Altering Toolbox(BAT)described in this paper is a tool designed for fast reconstruction of an altered blade geometry for design optimization purposes.The BAT algorithm is capable of twisting a given rotor’s angle of attack and stretching the chord length along the span of the rotor.Several test cases were run using the BAT’s algorithm.The BAT code’s twisting,stretching,and mesh reconstruction capabilities proved to be able to handle reasonably large geometric alterations to a provided input rotor geometry.The test examples showed that the toolbox’s algorithm could handle any stretching of the blade’s chord as long as the blade remained within the original bounds of the unaltered mesh.The algorithm appears to fail when the net twist angle applied the geometry exceeds approximately 30 degrees,however this limitation is dependent on the initial geometry and other input parameters.Overall,the algorithm is a very powerful tool for automating a design optimization procedure.
基金supported by the CRRC Zhuzhou Institute Company Ltd.and in part by Key R&D projects in Hunan+1 种基金ChinaNo.2022GK2062。
文摘In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions.
基金National Natural Science Foundation Joint Fund Key Project(U20A20292)Task Book for Shandong Provincial Science and Technology Small and Medium-Sized Enterprise Innovation Capability Enhancement Engineering Project(2023TSGC0005).
文摘The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2).
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
文摘This paper proposes and implements a model-free open-loop iterative learning control(ILC)strategy to realize the speed control of the single-phase flux switching motor(FSM)with an asymmetrical rotor.Base on the proposed winding control method,the asymmetrical rotor enables the motor to generate continuous positive torque for positive rotation,and relatively small resistance torque for negative rotation.An initial iteration coefficient and variable iteration coefficient optimized scheme was proposed based on the characteristics of the hardware circuit,thereby forming the model-free strategy.A series of prototype experiments was carried out.Experimental results verify the effectiveness and practicability of the proposed ILC strategy.
文摘For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.
文摘The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.
基金supported by National Science Foundation of China(Grant No.51705306).
文摘The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.
文摘The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.
基金National Natural Science Foundation of China (506460210) Chinese Specialized Research Fund for the Doctoral Program of Higher Education (20060213007)Development Program for Outstanding Young Teachers in Harbin Institute of Technology (HITQNJS.2006.046)
文摘The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to investigate the effects of the curved rotors on the stage performance and the aerodynamic interaction between the blade rows. The results show that, compared to the compressor with unurved rotors, the compressor under scrutiny acquires remarkable increases in efficiency with significantly reduced amplitudes of the time-dependent fluctuation. The amplitude of the pressure fluctuation around the stator leading edge decreases at both endwalls, but increases at the mid-span in the curved rotors. The pressure fluctuation near the stator leading edge, therefore, becomes more uniform in the radial direction of this compressor. Except for the leading edge area, the pressure fluctuatinn amplitude declines remarkably in the tip region of stator surface downstream of the curved rotor, but hardly changes in the middle and at the hub.
文摘In this paper, an identification method to estimate the unbalances is introduced, which is based on the boundary element method (BEM). By using the vibration response measured at some points on the flexible rotor the unbalances can be identified conveniently. Therefore, the rotor can be balanced without test runs.
基金Supported by the National Program on Key Basic Research Project(973Program)(2012CB026000)Ph.D Programs Foundation of Ministry of Education of China(20110010110009)
文摘A control system aims at vibration reduction in a two-span rotor system with two shear mode magnetorheological (MRF) dampers is designed. A finite element model of the MRF damper- rotor system is built and used to analyze the rotor vibration characteristics. Based on Hooke and Jeeves algorithm and the numerical simulation analysis, an optimal appropriate controller is proposed and designed. Experimental results show that rotor vibration caused by unbalance is well controlled ( first critical speed region 37% , second critical speed region 42% ). To reflect advantages of optimi- zing strategy presented and validate the intelligent optimization control technology, detailed experi- ments were developed on a two-span rotor-vibration-control platform. The influence on accuracy, rapidity and stability of optimizing control for rotor vibration are analyzed. It provides a powerful technical support for the extension and application in target and control for shafting vibration.
文摘The nonlinear properties of rotating machinery vibration signals are presented. The relationship between faults and quadratic phase coupling is discussed. The mechanism that gives rise to quadratic phase coupling is analyzed, and the coupling models are summarized. As a result, higher order spectra analysis is introduced into fault diagnosis of rotors. A brief review of the properties of higher order spectra is presented. Furthermore, the bicoherence spectrum is employed to extract the features that signify the machinery condition. Experiments show that bicoherence spectrum patterns of different faults are quite different, so it is proposed to identify the faults in rotors.
文摘A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.
文摘The SiCp/Al-alloy composite front brake rotors designed for Shanghai Santana cars were prepared by semi-solid stirring+liquid forging process. The composite brake rotors were subjected to dynamometer tests on a SCHENCK brake testing system, referring to TL110 standard of VOLKSWAGEN Co. The friction coefficient and thermal response during fade testing and the wear performance of the composite rotors were studied as the functions of various parameters such as braking pressures, initial speeds, initial temperatures, torque and decelerations, and were compared with those of conventional cast iron rotors. The results show that the properties of the composite rotors can achieve the requirements of commercial cast iron rotors. The results also show that the friction coefficients of the composite rotors under different braking conditions are within the deviation band specified by the TL110 standard, and the temperature rise of composite rotors is lower than that of cast iron rotors at the end of each fade stop. The wear resistance of composite rotors is higher than that of cast iron rotors. The friction mechanism and wear mechanism were analyzed.
文摘The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of ?2.3。, wind speeds of 10, 15, 24 m/s and yaw angles of 15。, 30。 and 45。. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm, a pitch angle of 3。, a wind speed of 5 m/s and yaw angles of 10。and 30。. The computed loads are compared to the loads measured from pressure measurement.
文摘A sudden increase of vibration amplitude with no foreboding often results in an abrupt breakdown of a mechanical system.The catastrophe of vibration state of a faulty rotor is a typical nonlinear phenomenon,and very difficult to be described and predicted with linear vibration theory.On the basis of nonlinear vibration and catastrophe theory,fhe eatastrophe of the vibration amplitude of the faulty rotor is described;a way to predict its emergence is developed.