In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the cont...In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.展开更多
We study the Cauchy problem of a two-species chemotactic model. Using the Fourier frequency localization and the Bony paraproduct decomposition, we establish a unique local solution and blow-up criterion of the soluti...We study the Cauchy problem of a two-species chemotactic model. Using the Fourier frequency localization and the Bony paraproduct decomposition, we establish a unique local solution and blow-up criterion of the solution, when the initial data(u0, v0, w0) belongs to homogeneous Besov spaces B^˙p,1^-2+3/p(R^3) ×B^˙r,1^-2+3/r(R^3) ×B^˙q,1^3/q(R^3) for p, q and r satisfying some technical assumptions. Furthermore, we prove that if the initial data is sufficiently small, then the solution is global. Meanwhile, based on the so-called Gevrey estimates, we particularly prove that the solution is analytic in the spatial variable. In addition, we analyze the long time behavior of the solution and obtain some decay estimates for higher derivatives in Besov and Lebesgue spaces.展开更多
In this paper,a gas kinetic scheme for the compressible multicomponent flows is presented by making use of two-species BGK model in[A.D.Kotelnikov and D.C.Montgomery,A Kinetic Method for Computing Inhomogeneous Fluid ...In this paper,a gas kinetic scheme for the compressible multicomponent flows is presented by making use of two-species BGK model in[A.D.Kotelnikov and D.C.Montgomery,A Kinetic Method for Computing Inhomogeneous Fluid Behavior,J.Comput.Phys.134(1997)364-388].Different from the conventional BGK model,the collisions between different species are taken into consideration.Based on the Chapman-Enskog expansion,the corresponding macroscopic equations are derived from this two-species model.Because of the relaxation terms in the governing equations,the method of operator splitting is applied.In the hyperbolic part,the integral solutions of the BGK equations are used to construct the numerical fluxes at the cell interface in the framework of finite volume method.Numerical tests are presented in this paper to validate the current approach for the compressible multicomponent flows.The theoretical analysis on the spurious oscillations at the interface is also presented.展开更多
文摘In this paper,we justify the convergence from the two-species Vlasov-PoissonBoltzmann(VPB,for short)system to the two-fluid incompressible Navier-Stokes-FourierPoisson(NSFP,for short)system with Ohm’s law in the context of classical solutions.We prove the uniform estimates with respect to the Knudsen numberεfor the solutions to the two-species VPB system near equilibrium by treating the strong interspecies interactions.Consequently,we prove the convergence to the two-fluid incompressible NSFP asεgoes to 0.
基金supported by National Natural Science Foundation of China (Grant Nos. 11671185, 11301248 and 11271175)
文摘We study the Cauchy problem of a two-species chemotactic model. Using the Fourier frequency localization and the Bony paraproduct decomposition, we establish a unique local solution and blow-up criterion of the solution, when the initial data(u0, v0, w0) belongs to homogeneous Besov spaces B^˙p,1^-2+3/p(R^3) ×B^˙r,1^-2+3/r(R^3) ×B^˙q,1^3/q(R^3) for p, q and r satisfying some technical assumptions. Furthermore, we prove that if the initial data is sufficiently small, then the solution is global. Meanwhile, based on the so-called Gevrey estimates, we particularly prove that the solution is analytic in the spatial variable. In addition, we analyze the long time behavior of the solution and obtain some decay estimates for higher derivatives in Besov and Lebesgue spaces.
基金Natural Science Foundation of China(NSFC)No.10931004,No.11171037 and No.91130021.
文摘In this paper,a gas kinetic scheme for the compressible multicomponent flows is presented by making use of two-species BGK model in[A.D.Kotelnikov and D.C.Montgomery,A Kinetic Method for Computing Inhomogeneous Fluid Behavior,J.Comput.Phys.134(1997)364-388].Different from the conventional BGK model,the collisions between different species are taken into consideration.Based on the Chapman-Enskog expansion,the corresponding macroscopic equations are derived from this two-species model.Because of the relaxation terms in the governing equations,the method of operator splitting is applied.In the hyperbolic part,the integral solutions of the BGK equations are used to construct the numerical fluxes at the cell interface in the framework of finite volume method.Numerical tests are presented in this paper to validate the current approach for the compressible multicomponent flows.The theoretical analysis on the spurious oscillations at the interface is also presented.