This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function...This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a chain drive and two helical gear units and their regular resistance condition were analyses. From the results of the study, effective formulas for determination of the partial ratios of the chain drive and two-step helical gearboxes were introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.展开更多
This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum s...This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and a helical gearbox with second-step double gear-sets and their regular resistance condition were analysed. Based on the results of the study, effective formulas for calculation of the partial ratios of the V-belt and a helical gearbox with second-step double gear-sets were proposed. By using explicit models, the partial ratios can be determined accurately and simply.展开更多
This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a...This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a mechanic system including two-row planetary gear sets and their regular resistance conditions, an explicit model for calculating the partial ratios of coupled planetary gear sets was proposed. In addition, by giving this effective model, the partial ratios can be calculated simply and accurately.展开更多
This paper introduces a new study on the optimum calculation of partial transmission ratios of mechanical drive system using a V-belt and two-step bevel helical gearbox for getting minimum size of the system. In the p...This paper introduces a new study on the optimum calculation of partial transmission ratios of mechanical drive system using a V-belt and two-step bevel helical gearbox for getting minimum size of the system. In the paper, based on moment equilibrium condition of a mechanic system including V-belt and a two-gear-unit of the gearbox, models for optimum calculation of the partial ratios of the V-belt and the gearbox were proposed. As the models are explicit, the partial ratios can be calculated accurately and simply.展开更多
This paper introduces a new study on the optimum calculation of partial transmission ratios of a mechanical drive system using a V-belt and a three-step helical gearbox in order to get the minimum size of the system. ...This paper introduces a new study on the optimum calculation of partial transmission ratios of a mechanical drive system using a V-belt and a three-step helical gearbox in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and three helical gear units and their regular resistance condition were analysed. From the results of the study, effective formulas for determination of the partial ratios of the V-belt and three-step helical gearboxes were introduced. As using explicit models, the partial ratios can be determined accurately and simply.展开更多
This paper presents a new study on optimum calculation of partial ratios of three-step helical gearboxes. The chosen objective function is the cross section dimension of the gearbox. In solving the optimization proble...This paper presents a new study on optimum calculation of partial ratios of three-step helical gearboxes. The chosen objective function is the cross section dimension of the gearbox. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including three gear units and their regular resistance condition are analyses. From the results of the study, effective formula for determination of the partial ratios of three-step helical gearboxes is introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.展开更多
The goal of this research is to look at multi-target optimization of a two-stage helical gearbox in order to determine the best key design elements for reducing gearbox height and enhancing gearbox efficiency.To do th...The goal of this research is to look at multi-target optimization of a two-stage helical gearbox in order to determine the best key design elements for reducing gearbox height and enhancing gearbox efficiency.To do this,the method known as Taguchi and GRA(Grey Relation Analysis)were used in two stages to address the problem.The single-objective optimization problem was addressed first to close the gap between variable levels,and then the multi-objective optimization problem was solved to determine the best primary design variables.The first and second stage CWFWs(Coefficients of Wheel Face Width),ACS(Permissible Contact Stresses),and first stage gear ratio were also calculated.The study’s findings were utilized to identify the best values for five critical design aspects of a two-stage helical gearbox.展开更多
文摘This paper presents a study on optimum determination of partial ratios of mechanical drive systems using a chain drive and two-step helical gearbox for getting minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a chain drive and two helical gear units and their regular resistance condition were analyses. From the results of the study, effective formulas for determination of the partial ratios of the chain drive and two-step helical gearboxes were introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.
文摘This paper presents a study on the optimum determination of partial transmission ratios of a mechanical drive system using a V-belt and a helical gearbox with second-step double gear-sets in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and a helical gearbox with second-step double gear-sets and their regular resistance condition were analysed. Based on the results of the study, effective formulas for calculation of the partial ratios of the V-belt and a helical gearbox with second-step double gear-sets were proposed. By using explicit models, the partial ratios can be determined accurately and simply.
文摘This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a mechanic system including two-row planetary gear sets and their regular resistance conditions, an explicit model for calculating the partial ratios of coupled planetary gear sets was proposed. In addition, by giving this effective model, the partial ratios can be calculated simply and accurately.
文摘This paper introduces a new study on the optimum calculation of partial transmission ratios of mechanical drive system using a V-belt and two-step bevel helical gearbox for getting minimum size of the system. In the paper, based on moment equilibrium condition of a mechanic system including V-belt and a two-gear-unit of the gearbox, models for optimum calculation of the partial ratios of the V-belt and the gearbox were proposed. As the models are explicit, the partial ratios can be calculated accurately and simply.
文摘This paper introduces a new study on the optimum calculation of partial transmission ratios of a mechanical drive system using a V-belt and a three-step helical gearbox in order to get the minimum size of the system. The chosen objective function was the cross section dimension of the system. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including a V-belt and three helical gear units and their regular resistance condition were analysed. From the results of the study, effective formulas for determination of the partial ratios of the V-belt and three-step helical gearboxes were introduced. As using explicit models, the partial ratios can be determined accurately and simply.
文摘This paper presents a new study on optimum calculation of partial ratios of three-step helical gearboxes. The chosen objective function is the cross section dimension of the gearbox. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including three gear units and their regular resistance condition are analyses. From the results of the study, effective formula for determination of the partial ratios of three-step helical gearboxes is introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.
文摘The goal of this research is to look at multi-target optimization of a two-stage helical gearbox in order to determine the best key design elements for reducing gearbox height and enhancing gearbox efficiency.To do this,the method known as Taguchi and GRA(Grey Relation Analysis)were used in two stages to address the problem.The single-objective optimization problem was addressed first to close the gap between variable levels,and then the multi-objective optimization problem was solved to determine the best primary design variables.The first and second stage CWFWs(Coefficients of Wheel Face Width),ACS(Permissible Contact Stresses),and first stage gear ratio were also calculated.The study’s findings were utilized to identify the best values for five critical design aspects of a two-stage helical gearbox.