期刊文献+
共找到8,123篇文章
< 1 2 250 >
每页显示 20 50 100
Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method 被引量:2
1
作者 Xiaojia Yang Jinghuan Jia +5 位作者 Qing Li Renzheng Zhu Jike Yang Zhiyong Liu Xuequn Cheng Xiaogang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1311-1321,共11页
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st... Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection. 展开更多
关键词 weathering steel stress-assisted corrosion gradient boosting decision tree machining learning
下载PDF
一种快速Boosting算法在标准图片识别中的应用
2
作者 尹静 盛彦斌 +3 位作者 孟欣 智婷 陈晓婷 刘栋材 《佳木斯大学学报(自然科学版)》 CAS 2024年第10期62-65,共4页
随着各种职业资格考试参加人数逐渐扩大,在大量照片文件中自动提取和识别标准证件照成为迫切需要解决的问题。针对这一问题比较了Haar特征和LBP特征两种特征识别模型在Adaboost算法下的时间效率,并通过实验确定了LBP特征下的Adaboost算... 随着各种职业资格考试参加人数逐渐扩大,在大量照片文件中自动提取和识别标准证件照成为迫切需要解决的问题。针对这一问题比较了Haar特征和LBP特征两种特征识别模型在Adaboost算法下的时间效率,并通过实验确定了LBP特征下的Adaboost算法在样本训练过程中所需的最优参数,提出了一种利用LBP特征在普通个人电脑平台下进行快速分类器训练的算法,并利用训练后得到的分类器实现了从大量考生上传照片中标准证件照图片的分类和处理。 展开更多
关键词 LBP 标准图片识别 boosting训练 快速分类器
下载PDF
Two-Stage Optimal Scheduling of Community Integrated Energy System
3
作者 Ming Li Rifucairen Fu +4 位作者 Tuerhong Yaxiaer Yunping Zheng Abiao Huang Ronghui Liu Shunfu Lin 《Energy Engineering》 EI 2024年第2期405-424,共20页
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an... From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES. 展开更多
关键词 Integrated energy system two-stage optimal scheduling controllable loads rolling optimization
下载PDF
Solar-assisted two-stage catalytic membrane reactor for coupling CO_(2) splitting with methane oxidation reaction
4
作者 Jinkun Tan Zhenbin Gu +4 位作者 Zhengkun Liu Pei Wang Reinout Meijboom Guangru Zhang Wanqin Jin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1771-1780,共10页
A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a... A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future. 展开更多
关键词 CO_(2)splitting two-stage catalytic membrane reactor Perovskite oxide Asymmetric membrane Solar irradiation assisted
下载PDF
Landslide susceptibility mapping(LSM)based on different boosting and hyperparameter optimization algorithms:A case of Wanzhou District,China
5
作者 Deliang Sun Jing Wang +2 位作者 Haijia Wen YueKai Ding Changlin Mi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3221-3232,共12页
Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)studies.However,these algorithms possess distinct computational strategies and hyperparameters,making it challen... Boosting algorithms have been widely utilized in the development of landslide susceptibility mapping(LSM)studies.However,these algorithms possess distinct computational strategies and hyperparameters,making it challenging to propose an ideal LSM model.To investigate the impact of different boosting algorithms and hyperparameter optimization algorithms on LSM,this study constructed a geospatial database comprising 12 conditioning factors,such as elevation,stratum,and annual average rainfall.The XGBoost(XGB),LightGBM(LGBM),and CatBoost(CB)algorithms were employed to construct the LSM model.Furthermore,the Bayesian optimization(BO),particle swarm optimization(PSO),and Hyperband optimization(HO)algorithms were applied to optimizing the LSM model.The boosting algorithms exhibited varying performances,with CB demonstrating the highest precision,followed by LGBM,and XGB showing poorer precision.Additionally,the hyperparameter optimization algorithms displayed different performances,with HO outperforming PSO and BO showing poorer performance.The HO-CB model achieved the highest precision,boasting an accuracy of 0.764,an F1-score of 0.777,an area under the curve(AUC)value of 0.837 for the training set,and an AUC value of 0.863 for the test set.The model was interpreted using SHapley Additive exPlanations(SHAP),revealing that slope,curvature,topographic wetness index(TWI),degree of relief,and elevation significantly influenced landslides in the study area.This study offers a scientific reference for LSM and disaster prevention research.This study examines the utilization of various boosting algorithms and hyperparameter optimization algorithms in Wanzhou District.It proposes the HO-CB-SHAP framework as an effective approach to accurately forecast landslide disasters and interpret LSM models.However,limitations exist concerning the generalizability of the model and the data processing,which require further exploration in subsequent studies. 展开更多
关键词 Landslide susceptibility Hyperparameter optimization boosting algorithms SHapley additive exPlanations(SHAP)
下载PDF
Two-Stage Planning of Distributed Power Supply and Energy Storage Capacity Considering Hierarchical Partition Control of Distribution Network with Source-Load-Storage
6
作者 Junhui Li Yuqing Zhang +4 位作者 Can Chen Xiaoxiao Wang Yinchi Shao Xingxu Zhu Cuiping Li 《Energy Engineering》 EI 2024年第9期2389-2408,共20页
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ... Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning. 展开更多
关键词 Zoning control two-stage planning site selection and capacity determination optimized scheduling improved ant lion algorithm
下载PDF
Bridge damage identification based on convolutional autoencoders and extreme gradient boosting trees
7
作者 Duan Yuanfeng Duan Zhengteng +1 位作者 Zhang Hongmei Cheng J.J.Roger 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期221-229,共9页
To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the accele... To enhance the accuracy and efficiency of bridge damage identification,a novel data-driven damage identification method was proposed.First,convolutional autoencoder(CAE)was used to extract key features from the acceleration signal of the bridge structure through data reconstruction.The extreme gradient boosting tree(XGBoost)was then used to perform analysis on the feature data to achieve damage detection with high accuracy and high performance.The proposed method was applied in a numerical simulation study on a three-span continuous girder and further validated experimentally on a scaled model of a cable-stayed bridge.The numerical simulation results show that the identification errors remain within 2.9%for six single-damage cases and within 3.1%for four double-damage cases.The experimental validation results demonstrate that when the tension in a single cable of the cable-stayed bridge decreases by 20%,the method accurately identifies damage at different cable locations using only sensors installed on the main girder,achieving identification accuracies above 95.8%in all cases.The proposed method shows high identification accuracy and generalization ability across various damage scenarios. 展开更多
关键词 structural health monitoring damage identification convolutional autoencoder(CAE) extreme gradient boosting tree(XGboost) machine learning
下载PDF
Modeling of Total Dissolved Solids (TDS) and Sodium Absorption Ratio (SAR) in the Edwards-Trinity Plateau and Ogallala Aquifers in the Midland-Odessa Region Using Random Forest Regression and eXtreme Gradient Boosting
8
作者 Azuka I. Udeh Osayamen J. Imarhiagbe Erepamo J. Omietimi 《Journal of Geoscience and Environment Protection》 2024年第5期218-241,共24页
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ... Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large. 展开更多
关键词 Water Quality Prediction Predictive Modeling Aquifers Machine Learning Regression eXtreme Gradient boosting
下载PDF
基于改进Boosting算法的车险理赔额组合模型预测
9
作者 邢铭轩 赵锦艳 《科技与创新》 2024年第9期1-6,共6页
针对车险理赔额预测中单一机器学习方法存在的问题,提出一种基于Optuna调参后的XGBoost(eXtreme Gradient Boosting)-LightGBM(Light Gradient Boosting Machine)组合模型预测方法。首先,分别构建XGBoost与LightGBM单个模型,并使用Optun... 针对车险理赔额预测中单一机器学习方法存在的问题,提出一种基于Optuna调参后的XGBoost(eXtreme Gradient Boosting)-LightGBM(Light Gradient Boosting Machine)组合模型预测方法。首先,分别构建XGBoost与LightGBM单个模型,并使用Optuna框架对模型参数进行优化;其次,将2个优化后的模型预测结果进行加权融合;最后,采用法国第三方责任险的车险保单数对融合模型进行验证。结果表明,与单一的XGBoost和LightGBM模型相比,经过参数优化后的组合模型在预测车险理赔额时展现出更低的均方根误差,从而证明其更高的预测精度。 展开更多
关键词 机器学习 boosting算法 组合模型 Optuna算法
下载PDF
基于K-Means聚类和Boosting算法的配电网线损计算方法
10
作者 马芳 张晨晖 《通信电源技术》 2024年第1期1-3,共3页
传统线损计算方法所需电气参数较多且计算过程烦琐,导致配电网线损计算结果精度较低,因此提出了一种基于K-Means聚类和Boosting算法的配电网线损计算方法。先采用K-Means聚类算法挖掘配电网的线路负荷有功电量、线路负荷无功电量、线路... 传统线损计算方法所需电气参数较多且计算过程烦琐,导致配电网线损计算结果精度较低,因此提出了一种基于K-Means聚类和Boosting算法的配电网线损计算方法。先采用K-Means聚类算法挖掘配电网的线路负荷有功电量、线路负荷无功电量、线路长度及线路负载率等电气特征指标,再将电气特征指标作为Boosting算法线损预测模型的输入数据,经过模型训练完成配电网线损的预测计算。实验结果表明,该设计方法的线损计算值与真实值之间的误差仅为4.27%,具有较高的配电网线损计算精度。 展开更多
关键词 K-MEANS聚类 boosting算法 配电网线损 线损计算
下载PDF
Predicting distant metastasis in nasopharyngeal carcinoma using gradient boosting tree model based on detailed magnetic resonance imaging reports
11
作者 Yu-Liang Zhu Xin-Lei Deng +7 位作者 Xu-Cheng Zhang Li Tian Chun-Yan Cui Feng Lei Gui-Qiong Xu Hao-Jiang Li Li-Zhi Liu Hua-Li Ma 《World Journal of Radiology》 2024年第6期203-210,共8页
BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced N... BACKGROUND Development of distant metastasis(DM)is a major concern during treatment of nasopharyngeal carcinoma(NPC).However,studies have demonstrated im-proved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy.Therefore,precise prediction of metastasis in patients with NPC is crucial.AIM To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging(MRI)reports.METHODS This retrospective study included 792 patients with non-distant metastatic NPC.A total of 469 imaging variables were obtained from detailed MRI reports.Data were stratified and randomly split into training(50%)and testing sets.Gradient boosting tree(GBT)models were built and used to select variables for predicting DM.A full model comprising all variables and a reduced model with the top-five variables were built.Model performance was assessed by area under the curve(AUC).RESULTS Among the 792 patients,94 developed DM during follow-up.The number of metastatic cervical nodes(30.9%),tumor invasion in the posterior half of the nasal cavity(9.7%),two sides of the pharyngeal recess(6.2%),tubal torus(3.3%),and single side of the parapharyngeal space(2.7%)were the top-five contributors for predicting DM,based on their relative importance in GBT models.The testing AUC of the full model was 0.75(95%confidence interval[CI]:0.69-0.82).The testing AUC of the reduced model was 0.75(95%CI:0.68-0.82).For the whole dataset,the full(AUC=0.76,95%CI:0.72-0.82)and reduced models(AUC=0.76,95%CI:0.71-0.81)outperformed the tumor node-staging system(AUC=0.67,95%CI:0.61-0.73).CONCLUSION The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC.The number of metastatic cervical nodes was identified as the principal contributing variable. 展开更多
关键词 Nasopharyngeal carcinoma Distant metastasis Machine learning Detailed magnetic resonance imaging report Gradient boosting tree model
下载PDF
一种基于Boosting判别模型的运动阴影检测方法 被引量:9
12
作者 查宇飞 楚瀛 +2 位作者 王勋 马时平 毕笃彦 《计算机学报》 EI CSCD 北大核心 2007年第8期1295-1301,共7页
在视频处理中,由于运动阴影具有与运动前景相同的特性,当在提取前景时,会误把阴影检测为前景.特别是当阴影和其它前景发生粘连时,这可能会严重地影响跟踪、识别等后续处理.该文提出了一种用于运动阴影检测的Boosting判别模型.这种方法... 在视频处理中,由于运动阴影具有与运动前景相同的特性,当在提取前景时,会误把阴影检测为前景.特别是当阴影和其它前景发生粘连时,这可能会严重地影响跟踪、识别等后续处理.该文提出了一种用于运动阴影检测的Boosting判别模型.这种方法先利用Boosting在不同的特征空间来区分前景和阴影,然后在判别随机场(DRFs)中结合前景和阴影的时空一致性,实现对前景和阴影的分割.首先,差分前图像与背景图像得到颜色不变子空间和纹理不变子空间;然后在这两个子空间上应用Boosting来区分前景和阴影;最后利用前景和阴影的时空一致性,在判别随机场中通过图分割的方法准确地分割前景和阴影.实验结果表明,无论是在室内场景,还是在室外场景,该文的方法要好于传统的方法. 展开更多
关键词 阴影检测 boosting 判别随机场 图分割
下载PDF
Boosting算法综述 被引量:26
13
作者 董乐红 耿国华 高原 《计算机应用与软件》 CSCD 北大核心 2006年第8期27-29,共3页
Boosting是近年来流行的一种用来提高学习算法精度的方法。以AdaBoost算法为例介绍了Boosting算法,并概括了它的各种理论分析,最后讨论了Boosting的应用及未来可能的发展方向。
关键词 boosting 机器学习 泛化误差 分类 回归
下载PDF
基于Boosting的TAN组合分类器 被引量:14
14
作者 石洪波 黄厚宽 王志海 《计算机研究与发展》 EI CSCD 北大核心 2004年第2期340-345,共6页
Boosting是一种有效的分类器组合方法 ,它能够提高不稳定学习算法的分类性能 ,但对稳定的学习算法效果不明显 TAN(tree augmentedna veBayes)是一种树状结构的贝叶斯网络 ,标准的TAN学习算法生成的TAN分类器是稳定的 ,用Boosting难以提... Boosting是一种有效的分类器组合方法 ,它能够提高不稳定学习算法的分类性能 ,但对稳定的学习算法效果不明显 TAN(tree augmentedna veBayes)是一种树状结构的贝叶斯网络 ,标准的TAN学习算法生成的TAN分类器是稳定的 ,用Boosting难以提高其分类性能 提出一种构造TAN的新算法GTAN ,并将由GTAN生成的多个TAN分类器用组合方法BoostingMultiTAN组合 ,最后实验比较了TAN组合分类器与标准的TAN分类器 实验结果表明 ,在大多数实验数据上 ,Boosting 展开更多
关键词 boosting 组合方法 TAN 依赖关系
下载PDF
Boosting集成支持向量回归机的滑坡位移预测 被引量:9
15
作者 董辉 傅鹤林 +1 位作者 冷伍明 龙万学 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第9期6-10,共5页
支持向量回归机(SVR)在实际的学习应用中,由于数据时空的复杂性和算法本身的参数选择,学习模型难以达到预期的效果.针对这个问题,提出了基于Boosting集成的支持向量回归机方法.通过在原始数据集加权采样的基础上,进行多次迭代子SVR机器... 支持向量回归机(SVR)在实际的学习应用中,由于数据时空的复杂性和算法本身的参数选择,学习模型难以达到预期的效果.针对这个问题,提出了基于Boosting集成的支持向量回归机方法.通过在原始数据集加权采样的基础上,进行多次迭代子SVR机器学习,不断调整样本权值再采样,优化机器学习模型,然后对迭代所得的每级支持向量回归结果按某种组合方法进行集成,得到最终的回归函数形式.应用该方法进行了仿真试验和滑坡变形时序预测研究.结果表明:使用集成的SVR进行回归预测较之单一的SVR具有更高的准确性和更好的泛化性.对Boosting与Bagging 2种不同的集成SVR,进行了比较研究,试验结果表明,2种算法性能相差不大,总体上前者强于后者. 展开更多
关键词 支持向量机 boosting集成 BAGGING 滑坡位移 预测
下载PDF
基于Boosting的不平衡数据分类算法研究 被引量:17
16
作者 李秋洁 茅耀斌 王执铨 《计算机科学》 CSCD 北大核心 2011年第12期224-228,共5页
研究基于boosting的不平衡数据分类算法,归纳分析现有算法,在此基础上提出权重采样boosting算法。对样本进行权重采样,改变原有数据分布,从而得到适用于不平衡数据的分类器。算法本质是利用采样函数调整原始boosting损失函数形式,进一... 研究基于boosting的不平衡数据分类算法,归纳分析现有算法,在此基础上提出权重采样boosting算法。对样本进行权重采样,改变原有数据分布,从而得到适用于不平衡数据的分类器。算法本质是利用采样函数调整原始boosting损失函数形式,进一步强调正样本的分类损失,使得分类器侧重对正样本的有效判别,提高正样本的整体识别率。算法实现简单,实用性强,在UCI数据集上的实验结果表明,对于不平衡数据分类问题,权重采样boosting优于原始boosting及前人算法。 展开更多
关键词 不平衡数据分类 boosting 采样
下载PDF
基于Boosting算法的垃圾邮件过滤方法研究 被引量:7
17
作者 柴宝仁 谷文成 +2 位作者 牛占云 周宏君 王克生 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期79-83,共5页
为解决垃圾邮件过滤的精确度和有效性问题,提出了一种基于邮件内容过滤的垃圾邮件过滤方法,该方法采用Boosting算法构造了一种垃圾邮件过滤器,利用该垃圾邮件过滤器实现对垃圾邮件的过滤.本文借鉴文本分类和信息检索领域所使用的评价指... 为解决垃圾邮件过滤的精确度和有效性问题,提出了一种基于邮件内容过滤的垃圾邮件过滤方法,该方法采用Boosting算法构造了一种垃圾邮件过滤器,利用该垃圾邮件过滤器实现对垃圾邮件的过滤.本文借鉴文本分类和信息检索领域所使用的评价指标,构建了垃圾邮件过滤器的评价体系,利用该评价体系,针对基于Boosting算法所构造的垃圾邮件过滤器对垃圾邮件的过滤实验所得到的数据进行了测试和评估,测试和评估的结果验证了Boosting算法在垃圾邮件过滤中的有效性,其性能优于传统的贝叶斯算法. 展开更多
关键词 boosting算法 垃圾邮件 过滤 分类器 评价
下载PDF
不均衡数据下基于CS-Boosting的故障诊断算法 被引量:6
18
作者 姚培 王仲生 +1 位作者 姜洪开 刘贞报 《振动.测试与诊断》 EI CSCD 北大核心 2013年第1期111-115,169,共5页
针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的... 针对传统Boosting算法在训练样本不均衡数据情况下不能较好地实现转子系统故障诊断的问题,提出了一种基于代价敏感度框架的Boosting故障诊断算法CS-Boosting。该算法建立了一个代价敏感损失函数,通过先验概率公式计算正样本与负样本的惩罚因子,并通过决策规则的训练使代价损失函数最小化。将该算法应用到滚动轴承故障诊断中,并与传统的Adaboost算法进行对比。试验结果表明,在转子系统不能获取更多故障数据的情况下,该算法的故障诊断性能较其他算法有明显的提高。 展开更多
关键词 代价敏感度 滚动轴承 boosting算法 CS—boosting 代价损失函数
下载PDF
基于统计分析Boosting的复杂场景目标识别方法研究 被引量:7
19
作者 张骏 高隽 +1 位作者 谢昭 吴良海 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第8期1788-1795,共8页
复杂场景目标识别是图像理解领域的重点和难点。Boosting算法是机器学习中用于提高精度的算法,现已在简单目标识别中获得广泛应用。提出了一种针对复杂场景目标识别任务的统计学启发Boosting算法,补充了现有识别任务中Boosting方法所缺... 复杂场景目标识别是图像理解领域的重点和难点。Boosting算法是机器学习中用于提高精度的算法,现已在简单目标识别中获得广泛应用。提出了一种针对复杂场景目标识别任务的统计学启发Boosting算法,补充了现有识别任务中Boosting方法所缺乏的理论分析依据。首先在统计学基础上,分析了Boosting的稳定性能,以此快速确定弱分类器数目,解决了算法性能的不可预测性,缩短了算法设计时间。之后针对不同复杂程度的真实世界场景,设计稳定有效的Boosting识别算法,实验结果表明算法对存在光照、视角、干扰、遮挡和类内多变的场景目标均有较高的识别精度,具有鲁棒性。 展开更多
关键词 统计分析 boosting 复杂场景 目标识别
下载PDF
基于Boosting算法的文本自动分类器设计 被引量:13
20
作者 董乐红 耿国华 周明全 《计算机应用》 CSCD 北大核心 2007年第2期384-386,共3页
Boosting算法是目前流行的一种机器学习算法。采用一种改进的Boosting算法Adaboost.MH^(KR)作为分类算法,设计了一个文本自动分类器,并给出了评估方法和结果。评价表明,该分类器有很好的分类精度。
关键词 文本分类 机器学习 boosting算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部