From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an...From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.展开更多
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ...Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.展开更多
Rapeseed(Brassica napus L.)harvesting method is critical since it significantly determines the seed yield,oil quality,and industrial efficiency.This study investigated the influences of harvesting methods on the quali...Rapeseed(Brassica napus L.)harvesting method is critical since it significantly determines the seed yield,oil quality,and industrial efficiency.This study investigated the influences of harvesting methods on the quality of cold-pressed rapeseed oil of two varieties.Oil color,peroxide value(POV),tocopherol content,fatty acid composition,and polarity of total polyphenols(PTP)contents of two rapeseed varieties in Huanggang and Xiangyang were compared through artificially simulated combined harvesting and two-stage harvesting.Results showed significant differences in the quality of rapeseed oil between the two harvesting methods.The red value(R-value),POV,total tocopherol contents,linoleic and linolenic acid content,and PTP content of the pressed rapeseed oil prepared by the combined harvesting method were about 27.6,5.7,15.8,2.0,0.5,and 28.6%lower than those of the oil produced from the two-stage harvesting method,respectively.Xiangyang and Huayouza62 performed better in the two regions and two varieties,respectively.To sum up,the rapeseed oil obtained 41–44 days after final flowering of combined harvesting,35 days after final flowering,and six days of post-ripening of the two-stage harvesting had the best quality.展开更多
Predicting potential facts in the future,Temporal Knowledge Graph(TKG)extrapolation remains challenging because of the deep dependence between the temporal association and semantic patterns of facts.Intuitively,facts(...Predicting potential facts in the future,Temporal Knowledge Graph(TKG)extrapolation remains challenging because of the deep dependence between the temporal association and semantic patterns of facts.Intuitively,facts(events)that happened at different timestamps have different influences on future events,which can be attributed to a hierarchy among not only facts but also relevant entities.Therefore,it is crucial to pay more attention to important entities and events when forecasting the future.However,most existing methods focus on reasoning over temporally evolving facts or mining evolutional patterns from known facts,which may be affected by the diversity and variability of the evolution,and they might fail to attach importance to facts that matter.Hyperbolic geometry was proved to be effective in capturing hierarchical patterns among data,which is considered to be a solution for modelling hierarchical relations among facts.To this end,we propose ReTIN,a novel model integrating real-time influence of historical facts for TKG reasoning based on hyperbolic geometry,which provides low-dimensional embeddings to capture latent hierarchical structures and other rich semantic patterns of the existing TKG.Considering both real-time and global features of TKG boosts the adaptation of ReTIN to the ever-changing dynamics and inherent constraints.Extensive experiments on benchmarks demonstrate the superiority of ReTIN over various baselines.The ablation study further supports the value of exploiting temporal information.展开更多
Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions ...Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists.展开更多
Accurate precipitation nowcasting can provide great convenience to the public so they can conduct corresponding arrangements in advance to deal with the possible impact of upcoming heavy rain.Recent relevant research ...Accurate precipitation nowcasting can provide great convenience to the public so they can conduct corresponding arrangements in advance to deal with the possible impact of upcoming heavy rain.Recent relevant research activities have shown their concerns on various deep learning models for radar echo extrapolation,where radar echo maps were used to predict their consequent moment,so as to recognize potential severe convective weather events.However,these approaches suffer from an inaccurate prediction of echo dynamics and unreliable depiction of echo aggregation or dissipation,due to the size limitation of convolution filter,lack of global feature,and less attention to features from previous states.To address the problems,this paper proposes a CEMA-LSTM recurrent unit,which is embedded with a Contextual Feature Correlation Enhancement Block(CEB)and a Multi-Attention Mechanism Block(MAB).The CEB enhances contextual feature correlation and supports its model to memorize significant features for near-future prediction;the MAB uses a position and channel attention mechanism to capture global features of radar echoes.Two practical radar echo datasets were used involving the FREM and CIKM 2017 datasets.Both quantification and visualization of comparative experimental results have demonstrated outperformance of the proposed CEMA-LSTMover recentmodels,e.g.,PhyDNet,MIM and PredRNN++,etc.In particular,compared with the second-rankedmodel,its average POD,FAR and CSI have been improved by 3.87%,1.65%and 1.79%,respectively on the FREM,and by 1.42%,5.60%and 3.16%,respectively on the CIKM 2017.展开更多
After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s ...After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s resilience. In this study, a multi-source coordinated load restoration strategy was investigated for a distribution network with soft open points(SOPs). Here, the flexible regulation ability of the SOPs is fully utilized to improve the load restoration level while mitigating voltage deviations. Owing to the uncertainty, a scenario-based stochastic optimization approach was employed,and the load restoration problem was formulated as a mixed-integer nonlinear programming model. A computationally efficient solution algorithm was developed for the model using convex relaxation and linearization methods. The algorithm is organized into a two-stage structure, in which the energy storage system is dispatched in the first stage by solving a relaxed convex problem. In the second stage, an integer programming problem is calculated to acquire the outputs of both SOPs and power resources. A numerical test was conducted on both IEEE 33-bus and IEEE 123-bus systems to validate the effectiveness of the proposed strategy.展开更多
Periprosthetic joint infection(PJI)following total knee arthroplasty is one of the most catastrophic and costly complications that carries significant patient wellness as well as economic burdens.The road to efficient...Periprosthetic joint infection(PJI)following total knee arthroplasty is one of the most catastrophic and costly complications that carries significant patient wellness as well as economic burdens.The road to efficiently diagnosing and treating PJI is challenging,as there is still no gold standard method to reach the diagnosis as early as desired.There are also international controversies with respect to the best approach to manage PJI cases.In this review,we highlight recent advances in managing PJI following knee arthroplasty surgery and discuss in depth the two-stage revision method.展开更多
Accurate measurements of upwelling irradiance just beneath the ocean surface,E_(u)(λ,0^(-)),can be used to calculate ocean optical parameters,and further develop retrieval algorithms for remotely sensing water compon...Accurate measurements of upwelling irradiance just beneath the ocean surface,E_(u)(λ,0^(-)),can be used to calculate ocean optical parameters,and further develop retrieval algorithms for remotely sensing water component concentrations.Due to the effects of sea surface waves,perturbation from instrument platform(ship),and instrument self-shading,E_(u)(λ,0^(-))is often difficult to be accurately measured.This study presents a procedure for extrapolating the E_(u)(λ,0^(-))from the in-water radiometric profile measurements.Using the optical profile data from 13 bands(ranging from 381 to 779 nm)measured by 45 casts in the Ligurian Sea during 2003–2009,the E_(u)(λ,0^(-))was extrapolated from in-water upwelling irradiance measurements between the initial shallow depth,Z_(0),and an optimal bottom depth,Z_(1),by three linear models(linear,2-degree polynomial,and exponential)and two nonlinear models(LOESS and spline).The accumulated errors of extrapolated E_(u)(λ,0^(-))at each wavelength for the five models were calculated.It was found that the optimal Z_(1) depth for the linear and exponential models was at the depth of80%of E_(u)(λ,Z_(0)),50%of E_(u)(λ,Z_(0))for the 2-degree polynomial model,40%of E_(u)(λ,Z_(0))for the LOESS model,and 15%of E_(u)(λ,Z_(0))for the spline model.The extrapolated E_(u)(λ,0^(-))derived from the five models was in good agreement with the calculated true E_(u)(λ,0^(-)).In all bands,the 2-degree polynomial model achieved the highest accuracy,followed by the LOESS model.In the short band of 381–559 nm,the linear and exponential models had the third-best performance,and the spline model performed worst within this range.For the red band of 619–779 nm,the accuracies of the exponential and spline models had the third highest performance,and the linear model produced lowest accuracy.Hence,the 2-degree polynomial model was an optimal procedure for extrapolation of E_(u)(λ,0^(-))from the in-water radiometric profile measurements.展开更多
Weather radar echo extrapolation plays a crucial role in weather forecasting.However,traditional weather radar echo extrapolation methods are not very accurate and do not make full use of historical data.Deep learning...Weather radar echo extrapolation plays a crucial role in weather forecasting.However,traditional weather radar echo extrapolation methods are not very accurate and do not make full use of historical data.Deep learning algorithms based on Recurrent Neural Networks also have the problem of accumulating errors.Moreover,it is difficult to obtain higher accuracy by relying on a single historical radar echo observation.Therefore,in this study,we constructed the Fusion GRU module,which leverages a cascade structure to effectively combine radar echo data and mean wind data.We also designed the Top Connection so that the model can capture the global spatial relationship to construct constraints on the predictions.Based on the Jiangsu Province dataset,we compared some models.The results show that our proposed model,Cascade Fusion Spatiotemporal Network(CFSN),improved the critical success index(CSI)by 10.7%over the baseline at the threshold of 30 dBZ.Ablation experiments further validated the effectiveness of our model.Similarly,the CSI of the complete CFSN was 0.004 higher than the suboptimal solution without the cross-attention module at the threshold of 30 dBZ.展开更多
Limb length discrepancy(LLD)is a common orthopedic condition that can result in significant functional impairment,pain,and cosmetic deformities.Current reconstructive techniques for severe LLD are primarily based on c...Limb length discrepancy(LLD)is a common orthopedic condition that can result in significant functional impairment,pain,and cosmetic deformities.Current reconstructive techniques for severe LLD are primarily based on callus distraction,which is a time-consuming process that can lead to complications,such as significant infection,joint stiffness,and stress fractures.To reduce the therapeutic time and minimize the risk of complications,we investigated the use of vascularized bone flaps as a technical supplement to callus distraction in the reconstruction of short limbs.We present two cases of severe LLD in the upper and lower legs,in which a twostage reconstruction approach was used.In the first stage,external fixation was applied to the affected limb to correct the soft tissue length and convert the short deformity into a bone defect.In the second stage,the bone defect was reconstructed using bilateral(patient A)or unilateral(patient B)free vascularized fibula bone grafts.Both patients had complete survival of the fibular grafts without stress fractures,and bone consolidation took 8 months(patient A)and 4 months(patient B).Compared to the traditional callus distraction,the two-stage approach was found to be more time-saving and reliable.The entire reconstructive scheme required 18 and 4 months for patients A and B,respectively,whereas the traditional callus distraction required 41 and 17 months,respectively.These findings suggest that the use of vascularized bone flaps as a technical supplement for callus distraction may provide an effective and efficient alternative for the treatment of severe LLD.Further studies are needed to validate these results and assess the long-term outcomes of this approach.展开更多
In order to improve the rejection capability of mismatched interferer signals,a new two-stage detector is proposed under homogeneous scenarios with unknown covariance matrix,which is obtained by cascading the adaptive...In order to improve the rejection capability of mismatched interferer signals,a new two-stage detector is proposed under homogeneous scenarios with unknown covariance matrix,which is obtained by cascading the adaptive matched filter(AMF)detector and the enhanced RAO(EnRAO)detector.The new detector has constant false alarm performance,and the closed-form expression of probability of false alarm and probability of detection is derived.The performance of the new detector is assessed,and analyzed in comparison with other detectors.The results show that,the proposed detector can provide enhanced rejection capability in the case of mismatch,but the performance of the detector is slightly lost under the condition of matching.展开更多
In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonl...In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonlinear prolongation operator, which provides more accurate initial values for the fine grid level. An edge preserving denoising operator is constructed to remove noise and preserve image edges. The local smoothing operator reduces the influence of staircase effect. The experiment results show that the new method not only improves the computational efficiency but also ensures good recovery quality.展开更多
To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(...To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.展开更多
NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the f...NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.展开更多
Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate...Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate the prediction parameters of AR modeling. The complex data samples are directly extrapolated to obtain the extrapolated echo data in the frequency domain. The small rotating angle data extrapolation and the large rotating angular data extrapolation are considered separately in azimuth domain. The method of data extrapolation for the small rotating angle is the same as that in frequency domain, while the amplitude samples of large rotating angle echo data are extrapolated to obtain extrapolated echo amplitude, and the complex data of large rotating angle echo samples are extrapolated to get the extrapolated echo phase respectively. The calculation results show that the extrapolated echo data obtained by the above mentioned methods are accurate.展开更多
Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) rep...Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) represents only the instantaneous trend of precipitation echo motion, the approach using derived echo motion vectors to extrapolate radar reflectivity as a rainfall forecast is not satisfactory if the lead time is beyond 30 minutes. For longer lead times, the effect of ambient winds on echo movement should be considered. In this paper, an extrapolation algorithm that extends forecast lead times up to 3 hours was developed to blend TREC vectors with model-predicted winds. The TREC vectors were derived from radar reflectivity patterns in 3 km height CAPPI (constant altitude plan position indicator) mosaics through a cross-correlation technique. The background steering winds were provided by predictions of the rapid update assimilation model CHAF (cycle of hourly assimilation and forecast). A similarity index was designed to determine the vertical level at which model winds were applied in the extrapolation process, which occurs via a comparison between model winds and radar vectors. Based on a summer rainfall case study, it is found that the new algorithm provides a better forecast.展开更多
基金supported in part by the National Natural Science Foundation of China(51977127)Shanghai Municipal Science and Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.
基金supported by the National Key R&D Program of China(2021YFD1600502).
文摘Rapeseed(Brassica napus L.)harvesting method is critical since it significantly determines the seed yield,oil quality,and industrial efficiency.This study investigated the influences of harvesting methods on the quality of cold-pressed rapeseed oil of two varieties.Oil color,peroxide value(POV),tocopherol content,fatty acid composition,and polarity of total polyphenols(PTP)contents of two rapeseed varieties in Huanggang and Xiangyang were compared through artificially simulated combined harvesting and two-stage harvesting.Results showed significant differences in the quality of rapeseed oil between the two harvesting methods.The red value(R-value),POV,total tocopherol contents,linoleic and linolenic acid content,and PTP content of the pressed rapeseed oil prepared by the combined harvesting method were about 27.6,5.7,15.8,2.0,0.5,and 28.6%lower than those of the oil produced from the two-stage harvesting method,respectively.Xiangyang and Huayouza62 performed better in the two regions and two varieties,respectively.To sum up,the rapeseed oil obtained 41–44 days after final flowering of combined harvesting,35 days after final flowering,and six days of post-ripening of the two-stage harvesting had the best quality.
基金Major Key Project of Pengcheng Laboratory,Grant/Award Number:PCL2022A03。
文摘Predicting potential facts in the future,Temporal Knowledge Graph(TKG)extrapolation remains challenging because of the deep dependence between the temporal association and semantic patterns of facts.Intuitively,facts(events)that happened at different timestamps have different influences on future events,which can be attributed to a hierarchy among not only facts but also relevant entities.Therefore,it is crucial to pay more attention to important entities and events when forecasting the future.However,most existing methods focus on reasoning over temporally evolving facts or mining evolutional patterns from known facts,which may be affected by the diversity and variability of the evolution,and they might fail to attach importance to facts that matter.Hyperbolic geometry was proved to be effective in capturing hierarchical patterns among data,which is considered to be a solution for modelling hierarchical relations among facts.To this end,we propose ReTIN,a novel model integrating real-time influence of historical facts for TKG reasoning based on hyperbolic geometry,which provides low-dimensional embeddings to capture latent hierarchical structures and other rich semantic patterns of the existing TKG.Considering both real-time and global features of TKG boosts the adaptation of ReTIN to the ever-changing dynamics and inherent constraints.Extensive experiments on benchmarks demonstrate the superiority of ReTIN over various baselines.The ablation study further supports the value of exploiting temporal information.
基金partially supported by the National Natural Science Foundation of China(41930644,61972439)the Collaborative Innovation Project of Anhui Province(GXXT-2022-093)the Key Program in the Youth Elite Support Plan in Universities of Anhui Province(gxyqZD2019010)。
文摘Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists.
基金funding from the Key Laboratory Foundation of National Defence Technology under Grant 61424010208National Natural Science Foundation of China(Nos.62002276,41911530242 and 41975142)+3 种基金5150 Spring Specialists(05492018012 and 05762018039)Major Program of the National Social Science Fund of China(Grant No.17ZDA092)333 High-LevelTalent Cultivation Project of Jiangsu Province(BRA2018332)Royal Society of Edinburgh,UK andChina Natural Science Foundation Council(RSE Reference:62967)_Liu)_2018)_2)under their Joint International Projects Funding Scheme and Basic Research Programs(Natural Science Foundation)of Jiangsu Province(BK20191398 and BK20180794).
文摘Accurate precipitation nowcasting can provide great convenience to the public so they can conduct corresponding arrangements in advance to deal with the possible impact of upcoming heavy rain.Recent relevant research activities have shown their concerns on various deep learning models for radar echo extrapolation,where radar echo maps were used to predict their consequent moment,so as to recognize potential severe convective weather events.However,these approaches suffer from an inaccurate prediction of echo dynamics and unreliable depiction of echo aggregation or dissipation,due to the size limitation of convolution filter,lack of global feature,and less attention to features from previous states.To address the problems,this paper proposes a CEMA-LSTM recurrent unit,which is embedded with a Contextual Feature Correlation Enhancement Block(CEB)and a Multi-Attention Mechanism Block(MAB).The CEB enhances contextual feature correlation and supports its model to memorize significant features for near-future prediction;the MAB uses a position and channel attention mechanism to capture global features of radar echoes.Two practical radar echo datasets were used involving the FREM and CIKM 2017 datasets.Both quantification and visualization of comparative experimental results have demonstrated outperformance of the proposed CEMA-LSTMover recentmodels,e.g.,PhyDNet,MIM and PredRNN++,etc.In particular,compared with the second-rankedmodel,its average POD,FAR and CSI have been improved by 3.87%,1.65%and 1.79%,respectively on the FREM,and by 1.42%,5.60%and 3.16%,respectively on the CIKM 2017.
基金supported by the State Grid Tianjin Electric Power Company Science and Technology Project (Grant No. KJ22-1-45)。
文摘After suffering from a grid blackout, distributed energy resources(DERs), such as local renewable energy and controllable distributed generators and energy storage can be used to restore loads enhancing the system’s resilience. In this study, a multi-source coordinated load restoration strategy was investigated for a distribution network with soft open points(SOPs). Here, the flexible regulation ability of the SOPs is fully utilized to improve the load restoration level while mitigating voltage deviations. Owing to the uncertainty, a scenario-based stochastic optimization approach was employed,and the load restoration problem was formulated as a mixed-integer nonlinear programming model. A computationally efficient solution algorithm was developed for the model using convex relaxation and linearization methods. The algorithm is organized into a two-stage structure, in which the energy storage system is dispatched in the first stage by solving a relaxed convex problem. In the second stage, an integer programming problem is calculated to acquire the outputs of both SOPs and power resources. A numerical test was conducted on both IEEE 33-bus and IEEE 123-bus systems to validate the effectiveness of the proposed strategy.
文摘Periprosthetic joint infection(PJI)following total knee arthroplasty is one of the most catastrophic and costly complications that carries significant patient wellness as well as economic burdens.The road to efficiently diagnosing and treating PJI is challenging,as there is still no gold standard method to reach the diagnosis as early as desired.There are also international controversies with respect to the best approach to manage PJI cases.In this review,we highlight recent advances in managing PJI following knee arthroplasty surgery and discuss in depth the two-stage revision method.
基金Supported by the Marine Special Program of Jiangsu Province in China (No.JSZRHYKJ202007)the National Natural Science Foundation of China (No.40801145)。
文摘Accurate measurements of upwelling irradiance just beneath the ocean surface,E_(u)(λ,0^(-)),can be used to calculate ocean optical parameters,and further develop retrieval algorithms for remotely sensing water component concentrations.Due to the effects of sea surface waves,perturbation from instrument platform(ship),and instrument self-shading,E_(u)(λ,0^(-))is often difficult to be accurately measured.This study presents a procedure for extrapolating the E_(u)(λ,0^(-))from the in-water radiometric profile measurements.Using the optical profile data from 13 bands(ranging from 381 to 779 nm)measured by 45 casts in the Ligurian Sea during 2003–2009,the E_(u)(λ,0^(-))was extrapolated from in-water upwelling irradiance measurements between the initial shallow depth,Z_(0),and an optimal bottom depth,Z_(1),by three linear models(linear,2-degree polynomial,and exponential)and two nonlinear models(LOESS and spline).The accumulated errors of extrapolated E_(u)(λ,0^(-))at each wavelength for the five models were calculated.It was found that the optimal Z_(1) depth for the linear and exponential models was at the depth of80%of E_(u)(λ,Z_(0)),50%of E_(u)(λ,Z_(0))for the 2-degree polynomial model,40%of E_(u)(λ,Z_(0))for the LOESS model,and 15%of E_(u)(λ,Z_(0))for the spline model.The extrapolated E_(u)(λ,0^(-))derived from the five models was in good agreement with the calculated true E_(u)(λ,0^(-)).In all bands,the 2-degree polynomial model achieved the highest accuracy,followed by the LOESS model.In the short band of 381–559 nm,the linear and exponential models had the third-best performance,and the spline model performed worst within this range.For the red band of 619–779 nm,the accuracies of the exponential and spline models had the third highest performance,and the linear model produced lowest accuracy.Hence,the 2-degree polynomial model was an optimal procedure for extrapolation of E_(u)(λ,0^(-))from the in-water radiometric profile measurements.
基金National Natural Science Foundation of China(42375145)The Open Grants of China Meteorological Admin-istration Radar Meteorology Key Laboratory(2023LRM-A02)。
文摘Weather radar echo extrapolation plays a crucial role in weather forecasting.However,traditional weather radar echo extrapolation methods are not very accurate and do not make full use of historical data.Deep learning algorithms based on Recurrent Neural Networks also have the problem of accumulating errors.Moreover,it is difficult to obtain higher accuracy by relying on a single historical radar echo observation.Therefore,in this study,we constructed the Fusion GRU module,which leverages a cascade structure to effectively combine radar echo data and mean wind data.We also designed the Top Connection so that the model can capture the global spatial relationship to construct constraints on the predictions.Based on the Jiangsu Province dataset,we compared some models.The results show that our proposed model,Cascade Fusion Spatiotemporal Network(CFSN),improved the critical success index(CSI)by 10.7%over the baseline at the threshold of 30 dBZ.Ablation experiments further validated the effectiveness of our model.Similarly,the CSI of the complete CFSN was 0.004 higher than the suboptimal solution without the cross-attention module at the threshold of 30 dBZ.
基金supported by the National Nature Science Foundation(grant nos.81871577 and 81971864)。
文摘Limb length discrepancy(LLD)is a common orthopedic condition that can result in significant functional impairment,pain,and cosmetic deformities.Current reconstructive techniques for severe LLD are primarily based on callus distraction,which is a time-consuming process that can lead to complications,such as significant infection,joint stiffness,and stress fractures.To reduce the therapeutic time and minimize the risk of complications,we investigated the use of vascularized bone flaps as a technical supplement to callus distraction in the reconstruction of short limbs.We present two cases of severe LLD in the upper and lower legs,in which a twostage reconstruction approach was used.In the first stage,external fixation was applied to the affected limb to correct the soft tissue length and convert the short deformity into a bone defect.In the second stage,the bone defect was reconstructed using bilateral(patient A)or unilateral(patient B)free vascularized fibula bone grafts.Both patients had complete survival of the fibular grafts without stress fractures,and bone consolidation took 8 months(patient A)and 4 months(patient B).Compared to the traditional callus distraction,the two-stage approach was found to be more time-saving and reliable.The entire reconstructive scheme required 18 and 4 months for patients A and B,respectively,whereas the traditional callus distraction required 41 and 17 months,respectively.These findings suggest that the use of vascularized bone flaps as a technical supplement for callus distraction may provide an effective and efficient alternative for the treatment of severe LLD.Further studies are needed to validate these results and assess the long-term outcomes of this approach.
基金supported by the National Natural Science Foundation of China(No.61971412).
文摘In order to improve the rejection capability of mismatched interferer signals,a new two-stage detector is proposed under homogeneous scenarios with unknown covariance matrix,which is obtained by cascading the adaptive matched filter(AMF)detector and the enhanced RAO(EnRAO)detector.The new detector has constant false alarm performance,and the closed-form expression of probability of false alarm and probability of detection is derived.The performance of the new detector is assessed,and analyzed in comparison with other detectors.The results show that,the proposed detector can provide enhanced rejection capability in the case of mismatch,but the performance of the detector is slightly lost under the condition of matching.
文摘In this paper, a new extrapolation economy cascadic multigrid method is proposed to solve the image restoration model. The new method combines the new extrapolation formula and quadratic interpolation to design a nonlinear prolongation operator, which provides more accurate initial values for the fine grid level. An edge preserving denoising operator is constructed to remove noise and preserve image edges. The local smoothing operator reduces the influence of staircase effect. The experiment results show that the new method not only improves the computational efficiency but also ensures good recovery quality.
基金The National Natural Science Foundation of China(No.61273236)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1637),China Scholarship Council
文摘To address the problem that a general augmented state Kalman filter or a two-stage Kalman filter cannot achieve satisfactory positioning performance when facing uncertain noise of the micro-electro-mechanical system(MEMS) inertial sensors, a novel interacting multiple model-based two-stage Kalman filter(IMM-TSKF) is proposed to adapt to the uncertain inertial sensor noise. Three bias filters are developed based on different noise characteristics to cover a wide range of noise levels. Then, an accurate estimation of biases is calculated by the interacting multiple model algorithm to correct the bias-free filter. Thus, the vehicle positioning system can achieve good performance when suffering from uncertain inertial sensor noise. The experimental results indicate that the average position error of the proposed IMMTSKF is 25% lower than that of the general TSKF.
基金ACKNOWLEDGM ENTS This work was supported by the National Natural Science Foundation of China (No.51006110, No.51276183, and No.51036006), the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331), and National Key Basic Research Program 973 Project Founded by MOST of China (No.2013CB228105).
文摘NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.
文摘Autoregressive (AR) modeling is applied to data extrapolation of radio frequency (RF) echo signals, and Burg algorithm, which can be computed in small amount and lead to a stable prediction filter, is used to estimate the prediction parameters of AR modeling. The complex data samples are directly extrapolated to obtain the extrapolated echo data in the frequency domain. The small rotating angle data extrapolation and the large rotating angular data extrapolation are considered separately in azimuth domain. The method of data extrapolation for the small rotating angle is the same as that in frequency domain, while the amplitude samples of large rotating angle echo data are extrapolated to obtain extrapolated echo amplitude, and the complex data of large rotating angle echo samples are extrapolated to get the extrapolated echo phase respectively. The calculation results show that the extrapolated echo data obtained by the above mentioned methods are accurate.
基金This study was provided by Natural Science Foundation of Guangdong Province under Grant No. 5001121the China Meteorological Administration under Grant Nos. CMATG2005Y05 and CMATG2008Z10the Guangdong Meteorological Bureau under Grant Nos. 2007A2 and GRMC2007Z03
文摘Extending the lead time of precipitation nowcasts is vital to improvements in heavy rainfall warning, flood mitigation, and water resource management. Because the TREC vector (tracking radar echo by correlation) represents only the instantaneous trend of precipitation echo motion, the approach using derived echo motion vectors to extrapolate radar reflectivity as a rainfall forecast is not satisfactory if the lead time is beyond 30 minutes. For longer lead times, the effect of ambient winds on echo movement should be considered. In this paper, an extrapolation algorithm that extends forecast lead times up to 3 hours was developed to blend TREC vectors with model-predicted winds. The TREC vectors were derived from radar reflectivity patterns in 3 km height CAPPI (constant altitude plan position indicator) mosaics through a cross-correlation technique. The background steering winds were provided by predictions of the rapid update assimilation model CHAF (cycle of hourly assimilation and forecast). A similarity index was designed to determine the vertical level at which model winds were applied in the extrapolation process, which occurs via a comparison between model winds and radar vectors. Based on a summer rainfall case study, it is found that the new algorithm provides a better forecast.