BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a ...BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a case in which CCRT had a reduction effect preoperatively.A 73-year-old woman with pyelonephritis was referred to our hospital.Computed tomography revealed right hydronephrosis and a 6-cm pelvic mass.Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)revealed squamous cell carci-noma.The patient was diagnosed with MT of MCT.Due to her poor general con-dition and renal malfunction,we selected CCRT,expecting fewer adverse effects.After CCRT,her performance status improved,and the tumor size was reduced;surgery was performed.Five months postoperatively,the patient developed dis-semination and lymph node metastases.Palliative chemotherapy was ineffective.She died 18 months after treatment initiation.CONCLUSION EUS-FNB was useful in the diagnosis of MT of MCT;CCRT suppressed the disea-se and improved quality of life.展开更多
Accurate photovoltaic(PV)power forecasting ensures the stability and reliability of power systems.To address the complex characteristics of nonlinearity,volatility,and periodicity,a novel two-stage PV forecasting meth...Accurate photovoltaic(PV)power forecasting ensures the stability and reliability of power systems.To address the complex characteristics of nonlinearity,volatility,and periodicity,a novel two-stage PV forecasting method based on an optimized transformer architecture is proposed.In the first stage,an inverted transformer backbone was utilized to consider the multivariate correlation of the PV power series and capture its non-linearity and volatility.ProbSparse attention was introduced to reduce high-memory occupation and solve computational overload issues.In the second stage,a weighted series decomposition module was proposed to extract the periodicity of the PV power series,and the final forecasting results were obtained through additive reconstruction.Experiments on two public datasets showed that the proposed forecasting method has high accuracy,robustness,and computational efficiency.Its RMSE improved by 31.23%compared with that of a traditional transformer,and its MSE improved by 12.57%compared with that of a baseline model.展开更多
The effect of austenite aging at 823 K on the microstructures and martensitic transformation behavior of Co 46 Ni 27 Ga 27 alloy has been investigated using optical microscopy (OM), transmission electron microscopy ...The effect of austenite aging at 823 K on the microstructures and martensitic transformation behavior of Co 46 Ni 27 Ga 27 alloy has been investigated using optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and differential scanning calorimeter (DSC). The microstructure observation results show that the unaged Co 46 Ni 27 Ga 27 alloy is composed of the tetragonal nonmodulated martensite phase and face-centered cubic γ phase. It is found that a new nanosized fcc phase precipitates in the process of austenite aging, leading to the formation of metastable age-affected martensite around the precipitates with composition inhomogeneity. Two-stage reverse martensitic transformation occurs in the samples aged for 2 and 24 h due to the composition difference between the age-affected martensite and the original martensite. For the Co 46 Ni 27 Ga 27 alloy aged for 120 h, no reverse transformation can be detected due to the disappearance of the metastable age-affected martensite and the small latent heat of the original martensite. The martensitic transformation temperatures of the Co 46 Ni 27 Ga 27 alloy decrease with an increase in aging time.展开更多
Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an importa...Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an important feature of stroke,and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis.We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in largearte ry atheroscle rotic stro ke.An observational retrospective study was conducted.From May 2020 to September 2021,blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy,as well as 16 healthy controls.Patients with stro ke who developed hemorrhagic transfo rmation(n=15)were compared to those who did not develop hemorrhagic transformation(n=17)and with healthy controls.The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing.We also examined key components of the lipopolysaccharide pathway:lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transfo rmation group compared with the healthy controls.The patients with ischemic stro ke who developed hemorrhagic transfo rmation exhibited altered gut micro biota composition,in particular an increase in the relative abundance and dive rsity of members belonging to the Enterobacteriaceae family.Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transfo rmation group.lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14 concentrations were associated with increased abundance of Enterobacte riaceae.Next,the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model.In this model,transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.Ta ken togethe r,our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation.This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transfo rmation after stro ke.展开更多
To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
Dynamic transformation(DT)of austenite(γ)to ferrite(α)in the hot deformation of various carbon steels was widely investigated.However,the nature of DT remains unclear due to the lack of quantitative analysis of stre...Dynamic transformation(DT)of austenite(γ)to ferrite(α)in the hot deformation of various carbon steels was widely investigated.However,the nature of DT remains unclear due to the lack of quantitative analysis of stress partitioning between two phases and the uncertainty of local distribution of substitu-tional elements at the interface in multi-component carbon steels used in the previous studies.Therefore,in the present study,a binary Fe-Ni alloy withα+γduplex microstructure in equilibrium was prepared and isothermally compressed inα+γtwo-phase region to achieve a quantitative analysis of microstruc-ture evolution,stress partitioning,and thermodynamics during DT.γtoαDT during isothermal compres-sion andαtoγreverse transformation on isothermal annealing under unloaded condition after deforma-tion were accompanied by Ni partitioning.The lattice strains during thermomechanical processing were obtained via in-situ neutron diffraction measurement,based on which the stress partitioning behavior betweenγandαwas discussed by using the generalized Hooke’s law.A thermodynamic framework for the isothermal deformation in solids was established based on the basic laws of thermodynamics,and it was shown that the total Helmholtz free energy change in the deformable material during the isothermal process should be smaller than the work done to the deformable material.Under the present thermody-namic framework,the microstructure evolution in the isothermal compression of Fe-14Ni alloy was well explained by considering the changes in chemical free energy,plastic and elastic energies,and the work done to the material.In addition,the stabilization of the softαphase in Fe-14Ni alloy by deformation was rationalized since theγtoαtransformation decreased the total Helmholtz free energy by decreasing the elastic and dislocation energies.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to...Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.展开更多
Knowledge distillation(KD) enhances student network generalization by transferring dark knowledge from a complex teacher network. To optimize computational expenditure and memory utilization, self-knowledge distillati...Knowledge distillation(KD) enhances student network generalization by transferring dark knowledge from a complex teacher network. To optimize computational expenditure and memory utilization, self-knowledge distillation(SKD) extracts dark knowledge from the model itself rather than an external teacher network. However, previous SKD methods performed distillation indiscriminately on full datasets, overlooking the analysis of representative samples. In this work, we present a novel two-stage approach to providing targeted knowledge on specific samples, named two-stage approach self-knowledge distillation(TOAST). We first soften the hard targets using class medoids generated based on logit vectors per class. Then, we iteratively distill the under-trained data with past predictions of half the batch size. The two-stage knowledge is linearly combined, efficiently enhancing model performance. Extensive experiments conducted on five backbone architectures show our method is model-agnostic and achieves the best generalization performance.Besides, TOAST is strongly compatible with existing augmentation-based regularization methods. Our method also obtains a speedup of up to 2.95x compared with a recent state-of-the-art method.展开更多
Cellular senescence, a natural process wherein cells cease division and undergo irreversible growth arrest, has long captivated the curiosity of scientists because of its many implications in aging and disease. Recent...Cellular senescence, a natural process wherein cells cease division and undergo irreversible growth arrest, has long captivated the curiosity of scientists because of its many implications in aging and disease. Recent research has shed light on the nexus between cellular senescence and malignant transformation, thus leading to a paradigm shift in understanding cancer development and progression.展开更多
Rice husk biochar inoculated with Bacillus megaterium(BM)(referred to as BM-inoculated biochar, BMB) and uninoculated rice husk biochar(RHB) were added to soil at two rates(0.5%, as BMB1 and RHB1, respectively, and 1....Rice husk biochar inoculated with Bacillus megaterium(BM)(referred to as BM-inoculated biochar, BMB) and uninoculated rice husk biochar(RHB) were added to soil at two rates(0.5%, as BMB1 and RHB1, respectively, and 1.0%, as BMB2 and RHB2, respectively) in an incubation experiment to comprehensively evaluate their effects on basic soil properties, phosphorus(P) fractions, bacterial community composition, and P-cycling genes.展开更多
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an...From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.展开更多
A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a...A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.展开更多
Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distributio...Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.展开更多
In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis ch...In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis char,oil,and gas were obtained and the nitrogenous components in the products were analyzed systematically by X-ray photoelectron spectroscopy(XPS),pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)and thermogravimetric-Fourier transform infrared spectrometry(TG-FTIR).The nitrogen distribution ranges of the pyrolysis char,oil,and gas were 37.34%–54.82%,32.87%–40.94%and 10.20%–28.83%,respectively.More nitrogen was retained in char at lower pyrolysis temperature and the nitrogen distribution of oil was from rise to decline with increasing temperature.The most abundant N-containing compounds in three-phase products were pyrrole-N,amines,and HCN,respectively.In addition,the transformation mechanism of nitrogen from wheat straw to pyrolysis products was concluded.展开更多
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and...The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.展开更多
The optimization of government subsidies to enhance the efficiency of coal companies’green transformation constitutes a critical component in the pursuit of global sustainability.We investigate the influence mechanis...The optimization of government subsidies to enhance the efficiency of coal companies’green transformation constitutes a critical component in the pursuit of global sustainability.We investigate the influence mechanism of government subsidies on the green transformation using data from the listed coal companies in China from 2007 to 2022.According to our findings and hypothesis testing,previous government subsidies did not have a significant direct impact on coal companies’green transformation.Nevertheless,government subsidies can help coal companies transition to greener practices by promoting innovative green initiatives.Furthermore,we confirmed an indirect route:that government subsidies enable the adoption of low-carbon initiatives,which in turn could facilitate the transition of coal companies towards green practices.In addition,we discovered that the coal company’s digitization will improve this indirect route.Thus,we propose increasing the effectiveness of government subsidies in facilitating coal companies’transition to green practices by focusing on technological advancements and enhancing company digitalization.展开更多
文摘BACKGROUND Malignant transformation(MT)of mature cystic teratoma(MCT)has a poor prognosis,especially in advanced cases.Concurrent chemoradiotherapy(CCRT)has an inhibitory effect on MT.CASE SUMMARY Herein,we present a case in which CCRT had a reduction effect preoperatively.A 73-year-old woman with pyelonephritis was referred to our hospital.Computed tomography revealed right hydronephrosis and a 6-cm pelvic mass.Endoscopic ultrasound-guided fine-needle biopsy(EUS-FNB)revealed squamous cell carci-noma.The patient was diagnosed with MT of MCT.Due to her poor general con-dition and renal malfunction,we selected CCRT,expecting fewer adverse effects.After CCRT,her performance status improved,and the tumor size was reduced;surgery was performed.Five months postoperatively,the patient developed dis-semination and lymph node metastases.Palliative chemotherapy was ineffective.She died 18 months after treatment initiation.CONCLUSION EUS-FNB was useful in the diagnosis of MT of MCT;CCRT suppressed the disea-se and improved quality of life.
基金Top Leading Talents Project of Gansu Province(B32722246002).
文摘Accurate photovoltaic(PV)power forecasting ensures the stability and reliability of power systems.To address the complex characteristics of nonlinearity,volatility,and periodicity,a novel two-stage PV forecasting method based on an optimized transformer architecture is proposed.In the first stage,an inverted transformer backbone was utilized to consider the multivariate correlation of the PV power series and capture its non-linearity and volatility.ProbSparse attention was introduced to reduce high-memory occupation and solve computational overload issues.In the second stage,a weighted series decomposition module was proposed to extract the periodicity of the PV power series,and the final forecasting results were obtained through additive reconstruction.Experiments on two public datasets showed that the proposed forecasting method has high accuracy,robustness,and computational efficiency.Its RMSE improved by 31.23%compared with that of a traditional transformer,and its MSE improved by 12.57%compared with that of a baseline model.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 50921003)the National Natural Science Foundation of China (No. 51101057)the Fundamental Research Funds for the Central Universities (No. 09QG41)
文摘The effect of austenite aging at 823 K on the microstructures and martensitic transformation behavior of Co 46 Ni 27 Ga 27 alloy has been investigated using optical microscopy (OM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and differential scanning calorimeter (DSC). The microstructure observation results show that the unaged Co 46 Ni 27 Ga 27 alloy is composed of the tetragonal nonmodulated martensite phase and face-centered cubic γ phase. It is found that a new nanosized fcc phase precipitates in the process of austenite aging, leading to the formation of metastable age-affected martensite around the precipitates with composition inhomogeneity. Two-stage reverse martensitic transformation occurs in the samples aged for 2 and 24 h due to the composition difference between the age-affected martensite and the original martensite. For the Co 46 Ni 27 Ga 27 alloy aged for 120 h, no reverse transformation can be detected due to the disappearance of the metastable age-affected martensite and the small latent heat of the original martensite. The martensitic transformation temperatures of the Co 46 Ni 27 Ga 27 alloy decrease with an increase in aging time.
基金supported by the National Key Research and Development Projects,Nos.2022 YFC3602400,2022 YFC3602401(to JX)the Project Program of National Clinical Research Center for Geriatric Disorders(Xiangya Hospital),No.2020LNJJ16(to JX)the National Natural Science Foundation of China,No.82271369(to JX)。
文摘Hemorrhagic transformation is a major complication of large-artery atheroscle rotic stroke(a major ischemic stro ke subtype)that wo rsens outcomes and increases mortality.Disruption of the gut microbiota is an important feature of stroke,and some specific bacteria and bacterial metabolites may contribute to hemorrhagic transformation pathogenesis.We aimed to investigate the relationship between the gut microbiota and hemorrhagic transformation in largearte ry atheroscle rotic stro ke.An observational retrospective study was conducted.From May 2020 to September 2021,blood and fecal samples were obtained upon admission from 32 patients with first-ever acute ischemic stroke and not undergoing intravenous thrombolysis or endovascular thrombectomy,as well as 16 healthy controls.Patients with stro ke who developed hemorrhagic transfo rmation(n=15)were compared to those who did not develop hemorrhagic transformation(n=17)and with healthy controls.The gut microbiota was assessed through 16S ribosomal ribonucleic acid sequencing.We also examined key components of the lipopolysaccharide pathway:lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.We observed that bacterial diversity was decreased in both the hemorrhagic transformation and non-hemorrhagic transfo rmation group compared with the healthy controls.The patients with ischemic stro ke who developed hemorrhagic transfo rmation exhibited altered gut micro biota composition,in particular an increase in the relative abundance and dive rsity of members belonging to the Enterobacteriaceae family.Plasma lipopolysaccharide and lipopolysaccharide-binding protein levels were higher in the hemorrhagic transformation group compared with the non-hemorrhagic transfo rmation group.lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14 concentrations were associated with increased abundance of Enterobacte riaceae.Next,the role of the gut microbiota in hemorrhagic transformation was evaluated using an experimental stroke rat model.In this model,transplantation of the gut microbiota from hemorrhagic transformation rats into the recipient rats triggered higher plasma levels of lipopolysaccharide,lipopolysaccharide-binding protein,and soluble CD14.Ta ken togethe r,our findings demonstrate a noticeable change in the gut microbiota and lipopolysaccharide-related inflammatory response in stroke patients with hemorrhagic transformation.This suggests that maintaining a balanced gut microbiota may be an important factor in preventing hemorrhagic transfo rmation after stro ke.
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金by JST FOREST Program(Grant No.JPMJFR203W,Japan)MEXT through Grant-in-Aid for Scientific Research(B)(No.19H02473,2019-2021)+2 种基金Grant-in-Aid for Scientific Research on Innovative Areas(Research in a proposed research area)(No.18H05456,2018-2022)the partial support through the research grant funded by the Amada Foundation(2022-2023)the financial support from the Amada Foundation(AF-2022017-B2).L.L.gratefully acknowledges the financial support provided by China Scholarship Council(No.201806295030)and thanks Dr.Elango Chandiran。
文摘Dynamic transformation(DT)of austenite(γ)to ferrite(α)in the hot deformation of various carbon steels was widely investigated.However,the nature of DT remains unclear due to the lack of quantitative analysis of stress partitioning between two phases and the uncertainty of local distribution of substitu-tional elements at the interface in multi-component carbon steels used in the previous studies.Therefore,in the present study,a binary Fe-Ni alloy withα+γduplex microstructure in equilibrium was prepared and isothermally compressed inα+γtwo-phase region to achieve a quantitative analysis of microstruc-ture evolution,stress partitioning,and thermodynamics during DT.γtoαDT during isothermal compres-sion andαtoγreverse transformation on isothermal annealing under unloaded condition after deforma-tion were accompanied by Ni partitioning.The lattice strains during thermomechanical processing were obtained via in-situ neutron diffraction measurement,based on which the stress partitioning behavior betweenγandαwas discussed by using the generalized Hooke’s law.A thermodynamic framework for the isothermal deformation in solids was established based on the basic laws of thermodynamics,and it was shown that the total Helmholtz free energy change in the deformable material during the isothermal process should be smaller than the work done to the deformable material.Under the present thermody-namic framework,the microstructure evolution in the isothermal compression of Fe-14Ni alloy was well explained by considering the changes in chemical free energy,plastic and elastic energies,and the work done to the material.In addition,the stabilization of the softαphase in Fe-14Ni alloy by deformation was rationalized since theγtoαtransformation decreased the total Helmholtz free energy by decreasing the elastic and dislocation energies.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
文摘Background: Cavernous transformation of the portal vein(CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. Methods: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography(DPV) and computed tomography angiography(CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein(LPV), right portal vein(RPV), main portal vein(MPV) and the portal vein bifurcation(PVB). Results: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV( P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. Conclusions: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.
基金supported by the National Natural Science Foundation of China (62176061)。
文摘Knowledge distillation(KD) enhances student network generalization by transferring dark knowledge from a complex teacher network. To optimize computational expenditure and memory utilization, self-knowledge distillation(SKD) extracts dark knowledge from the model itself rather than an external teacher network. However, previous SKD methods performed distillation indiscriminately on full datasets, overlooking the analysis of representative samples. In this work, we present a novel two-stage approach to providing targeted knowledge on specific samples, named two-stage approach self-knowledge distillation(TOAST). We first soften the hard targets using class medoids generated based on logit vectors per class. Then, we iteratively distill the under-trained data with past predictions of half the batch size. The two-stage knowledge is linearly combined, efficiently enhancing model performance. Extensive experiments conducted on five backbone architectures show our method is model-agnostic and achieves the best generalization performance.Besides, TOAST is strongly compatible with existing augmentation-based regularization methods. Our method also obtains a speedup of up to 2.95x compared with a recent state-of-the-art method.
基金supported by the Key Project of the National Natural Science Foundation (82030091)the Key Project of LiaoNing Science Foundation (2022JH6/100100037, 2022JH2/20200034,and JYTMS20230135)。
文摘Cellular senescence, a natural process wherein cells cease division and undergo irreversible growth arrest, has long captivated the curiosity of scientists because of its many implications in aging and disease. Recent research has shed light on the nexus between cellular senescence and malignant transformation, thus leading to a paradigm shift in understanding cancer development and progression.
基金supported by the Science and Technology Department of Zhejiang Province, China (Grant Nos. 2022C02022 and 2023C02020)。
文摘Rice husk biochar inoculated with Bacillus megaterium(BM)(referred to as BM-inoculated biochar, BMB) and uninoculated rice husk biochar(RHB) were added to soil at two rates(0.5%, as BMB1 and RHB1, respectively, and 1.0%, as BMB2 and RHB2, respectively) in an incubation experiment to comprehensively evaluate their effects on basic soil properties, phosphorus(P) fractions, bacterial community composition, and P-cycling genes.
基金supported in part by the National Natural Science Foundation of China(51977127)Shanghai Municipal Science and Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.
基金supported by the National Key Research and Development Program of China(2022YFE0101600)the National Natural Science Foundation of China(U23A20117)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20220002,BE2022024)the Leading Talents Program of Zhejiang Province(2024C03223)Topnotch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP).
文摘A two-stage catalytic membrane reactor(CMR)that couples CO_(2) splitting with methane oxidation reactions was constructed based on an oxygen-permeable perovskite asymmetric membrane.The asymmetric membrane comprises a dense SrFe_(0.9)Ta_(0.1)O_(3-σ)(SFT)separation layer and a porous Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Cu_(0.1)O_(3-σ)(SFTC)catalytic layer.In thefirst stage reactor,a CO_(2) splitting reaction(CDS:2CO_(2)→2CO+O_(2))occurs at the SFTC catalytic layer.Subsequently,the O_(2) product is selectively extracted through the SFT separation layer to the permeated side for the methane combustion reaction(MCR),which provides an extremely low oxygen partial pressure to enhance the oxygen extraction.In the second stage,a Sr_(0.9)(Fe_(0.9)Ta_(0.1))_(0.9)Ni_(0.1)O_(3-σ)(SFTN)catalyst is employed to reform the products derived from MCR.The two-stage CMR design results in a remarkable 35.4%CO_(2) conversion for CDS at 900℃.The two-stage CMR was extended to a hollowfiber configuration combining with solar irradiation.The solar-assisted two-stage CMR can operate stably for over 50 h with a high hydrogen yield of 18.1 mL min^(-1) cm^(-2).These results provide a novel strategy for reducing CO_(2) emissions,suggesting potential avenues for the design of the high-performance CMRs and catalysts based on perovskite oxides in the future.
基金supported by the National Key Research and Development Program of China(No.2023YFC 2909000)the National Natural Science Foundation of China(No.52174240)+4 种基金the Major Science and Technology Projects of Xinjiang Uygur Autonomous Region(No.2023A03003-2)the XingLiao Talent Program of Liaoning Province(No.XLYC2203167)the Excellent Youth Fund Project of Liaoning Natural Science Foundation(No.2023JH3/10200010)the Fundamental Research Funds for the Central Universities(No.N23011026)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-15).
文摘Pyrolusite comprises the foremost manganese oxides and is a major source of manganese production.An innovative hydrogenbased mineral phase transformation technology to pyrolusite was proposed,where a 96.44%distribution rate of divalent manganese(Mn^(2+))was observed at an optimal roasting temperature of 650℃,a roasting time of 25 min,and an H2 concentration of 20vol%;under these conditions.The manganese predominantly existed in the form of manganosite.This study investigated the generation mechanism of manganosite based on the reduction kinetics,phase transformation,and structural evolution of pyrolusite and revealed that high temperature improved the distribution rate,and the optimal kinetic model for the reaction was the random nucleation and growth model(reaction order,n=3/2)with an activation energy(E_(a))of 24.119 kJ·mol^(−1).Throughout the mineral phase transformation,manganese oxide from the outer layer of particles moves inward to the core.In addition,pyrolusite follows the reduction sequence of MnO_(2)→Mn_(2)O_(3)→Mn_(3)O_(4)→MnO,and the reduction of manganese oxides in each valence state simultaneously proceeds.These findings provide significant insight into the efficient and clean utilization of pyrolusite.
基金supported by the National Key Research and Development Program of China(2019YFC1906700)the Natural Science Foundation of Sichuan,China(2022NSFSC0308).
文摘In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis char,oil,and gas were obtained and the nitrogenous components in the products were analyzed systematically by X-ray photoelectron spectroscopy(XPS),pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)and thermogravimetric-Fourier transform infrared spectrometry(TG-FTIR).The nitrogen distribution ranges of the pyrolysis char,oil,and gas were 37.34%–54.82%,32.87%–40.94%and 10.20%–28.83%,respectively.More nitrogen was retained in char at lower pyrolysis temperature and the nitrogen distribution of oil was from rise to decline with increasing temperature.The most abundant N-containing compounds in three-phase products were pyrrole-N,amines,and HCN,respectively.In addition,the transformation mechanism of nitrogen from wheat straw to pyrolysis products was concluded.
基金Financial support by Dual Initiative Project of Jiangsu Province and Changzhou University is gratefully acknowledgedSample analysis supported by Analysis and Testing Center,NERC Biomass of Changzhou University was also greatly acknowledged.
文摘The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date.
基金supported by the China National Natural Sciences Fund Project(Nos.71874190 and 72403233)Jiangsu Provincial Department of Science and Technology Program(Innovation Support Program Soft Science Research)(No.BR2023016-4)+2 种基金China Postdoctoral Science Foundation(No.2024M753503)Key Projects Funded by Jiangsu Social Science Fund(No.21GLA003)The Ministry of Education of Humanities and Social Science Project.
文摘The optimization of government subsidies to enhance the efficiency of coal companies’green transformation constitutes a critical component in the pursuit of global sustainability.We investigate the influence mechanism of government subsidies on the green transformation using data from the listed coal companies in China from 2007 to 2022.According to our findings and hypothesis testing,previous government subsidies did not have a significant direct impact on coal companies’green transformation.Nevertheless,government subsidies can help coal companies transition to greener practices by promoting innovative green initiatives.Furthermore,we confirmed an indirect route:that government subsidies enable the adoption of low-carbon initiatives,which in turn could facilitate the transition of coal companies towards green practices.In addition,we discovered that the coal company’s digitization will improve this indirect route.Thus,we propose increasing the effectiveness of government subsidies in facilitating coal companies’transition to green practices by focusing on technological advancements and enhancing company digitalization.