Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quant...Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%.展开更多
Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-ket...Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-keto-L-gulonic acid (2KLG) fermentation from L-sorbose by the mixed culture of B. megaterium BM302 and G. oxydans. The SAP purified by three chromatographic steps gave 35-fold purification with a yield of 13% and a specific activity of 5.21 units/mg protein. The molecular weight of the purified SAP was about 58 kDa. The SDH accelerative activity of SAP at pH 7 and 50℃ was the highest. Additionally, it retained 60% activity at a pH range of 6.5 ~ 10 and was stable at 20℃ ~ 60℃. After 0.32-unit SAP was added to the single cultured G. oxydans strains, the SDH activity was apparently accelerated and the 2KLG yield of GO29, GO112, GO and GI13 was enhanced 2.1, 3.3, 3.5 and 2.9 folds respectively over that of the strains without the addition of SAP.展开更多
We develop a modified two-step method of growing high-density and narrow size-distribution InAs/GaAs quantum dots (QDs) by molecular beam epitaxy. In the first step, high-density small InAs QDs are formed by optimiz...We develop a modified two-step method of growing high-density and narrow size-distribution InAs/GaAs quantum dots (QDs) by molecular beam epitaxy. In the first step, high-density small InAs QDs are formed by optimizing the continuous deposition amount. In the second step, deposition is carried out with a long growth interruption for every 0.1 InAs monolayer. Atomic force microscope images show that the high-density (~5.9 × 10^11 cm^-2) good size-uniformity InAs QDs are achieved. The strong intensity and narrow linewidth (27.7 meV) of the photoluminescence spectrum show that the QDs grown in this two-step method have a good optical quality.展开更多
In this paper,three kinds of materials including graphite,titanium(Ti)and molybdenum(Mo)are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diod...In this paper,three kinds of materials including graphite,titanium(Ti)and molybdenum(Mo)are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diode.The results show that the characteristics of diode are mainly determined by the cathode plasma motion under a 15 mm diode gap,in which the typical electron beam parameters are 280 kV,3.5 kA.When the diode gap is reduced to 5 mm,the voltage of the electron beam reduces to about 200 kV,and its current increases to more than 8.2 kA.It is calculated that the surface temperatures of Ti and Mo anodes are higher than their melting points.The diode plasma luminescence images show that Ti and Mo anodes produce plasmas soon after the bombardment of electron beams.Ti and Mo lines are respectively found in the plasma composition of Ti and Mo anode diodes.Surface melting traces are also observed on Ti and Mo anodes by comparing the micromorphologies before and after bombardment of the electron beam.These results suggest that the time of anode plasma generation is closely related to the anode material.Compared with graphite,metal Ti and Mo anodes are more likely to produce large amounts of plasma due to their more significant temperature rise effect.According to the moment that anode plasma begins to generate,the average expansion velocities of cathode and anode plasma are estimated by fitting the improved space-charge limited flow model.This reveals that generation and motion of the anode plasma significantly affect the characteristics of intense electron beam diode.展开更多
基金supported by the 973 Program of China(No.2012CB921603)National Natural Science Foundation of China(Nos.61475093,61127017,61178009,61108030,61378047,61275213,61475093,and 61205216)+3 种基金the National Key Technology R&D Program of China(No.2013BAC14B01)the Shanxi Natural Science Foundation(Nos.2013021004-1 and 2012021022-1)the Shanxi Scholarship Council of China(Nos.2013-011 and 2013-01)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,China
文摘Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%.
基金the General Program of National Science Foundation of China(No.10375066)
文摘Bacillus megaterium BM302 bred by ion-beam implantation produces L-sorbose dehydrogenase accelerative protein (SAP) to accelerate the activity of L-sorbose dehydrogenase (SDH) of Gluconobacter oxydans in the 2-keto-L-gulonic acid (2KLG) fermentation from L-sorbose by the mixed culture of B. megaterium BM302 and G. oxydans. The SAP purified by three chromatographic steps gave 35-fold purification with a yield of 13% and a specific activity of 5.21 units/mg protein. The molecular weight of the purified SAP was about 58 kDa. The SDH accelerative activity of SAP at pH 7 and 50℃ was the highest. Additionally, it retained 60% activity at a pH range of 6.5 ~ 10 and was stable at 20℃ ~ 60℃. After 0.32-unit SAP was added to the single cultured G. oxydans strains, the SDH activity was apparently accelerated and the 2KLG yield of GO29, GO112, GO and GI13 was enhanced 2.1, 3.3, 3.5 and 2.9 folds respectively over that of the strains without the addition of SAP.
基金Project supported by the National Natural Science Foundation of China (Grant No 60625405)the Special Foundation forState Major Basic Research Program of China (Grant No 2006CB921504)
文摘We develop a modified two-step method of growing high-density and narrow size-distribution InAs/GaAs quantum dots (QDs) by molecular beam epitaxy. In the first step, high-density small InAs QDs are formed by optimizing the continuous deposition amount. In the second step, deposition is carried out with a long growth interruption for every 0.1 InAs monolayer. Atomic force microscope images show that the high-density (~5.9 × 10^11 cm^-2) good size-uniformity InAs QDs are achieved. The strong intensity and narrow linewidth (27.7 meV) of the photoluminescence spectrum show that the QDs grown in this two-step method have a good optical quality.
文摘In this paper,three kinds of materials including graphite,titanium(Ti)and molybdenum(Mo)are used as anodes to figure out the influence factors of anode material on the characteristics of the intense electron beam diode.The results show that the characteristics of diode are mainly determined by the cathode plasma motion under a 15 mm diode gap,in which the typical electron beam parameters are 280 kV,3.5 kA.When the diode gap is reduced to 5 mm,the voltage of the electron beam reduces to about 200 kV,and its current increases to more than 8.2 kA.It is calculated that the surface temperatures of Ti and Mo anodes are higher than their melting points.The diode plasma luminescence images show that Ti and Mo anodes produce plasmas soon after the bombardment of electron beams.Ti and Mo lines are respectively found in the plasma composition of Ti and Mo anode diodes.Surface melting traces are also observed on Ti and Mo anodes by comparing the micromorphologies before and after bombardment of the electron beam.These results suggest that the time of anode plasma generation is closely related to the anode material.Compared with graphite,metal Ti and Mo anodes are more likely to produce large amounts of plasma due to their more significant temperature rise effect.According to the moment that anode plasma begins to generate,the average expansion velocities of cathode and anode plasma are estimated by fitting the improved space-charge limited flow model.This reveals that generation and motion of the anode plasma significantly affect the characteristics of intense electron beam diode.