Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune de...Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method.The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements.Then,to improve the accuracy of similarity calculation,a quantitative matching method is proposed.The model uses mathematical methods to train and evolve immune elements,increasing the diversity of immune recognition and allowing for the successful detection of unknown intrusions.The proposed model’s objective is to accurately identify known intrusions and expand the identification of unknown intrusions through signature detection and immune detection,overcoming the disadvantages of traditional methods.The experiment results show that the proposed model can detect intrusions effectively.It has a detection rate of more than 99.6%on average and a false alarm rate of 0.0264%.It outperforms existing immune intrusion detection methods in terms of comprehensive detection performance.展开更多
Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide b...Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is...The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.展开更多
Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant info...Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation.These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.Methods To address this issue,this study introduces a novel Co-SOD method with iterative purification and predictive optimization(IPPO)comprising a common salient purification module(CSPM),predictive optimizing module(POM),and diminishing mixed enhancement block(DMEB).Results These components are designed to explore noise-free joint representations,assist the model in enhancing the quality of the final prediction results,and significantly improve the performance of the Co-SOD algorithm.Furthermore,through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM,POM,and DMEB,our experiments confirmed that these components are pivotal in enhancing the performance of the model,substantiating the significant advancements of our method over existing benchmarks.Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.展开更多
Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a...Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.展开更多
This work focuses on the problem of monitoring the coastline, which in Portugal’s case means monitoring 3007 kilometers, including 1793 maritime borders with the Atlantic Ocean to the south and west. The human burden...This work focuses on the problem of monitoring the coastline, which in Portugal’s case means monitoring 3007 kilometers, including 1793 maritime borders with the Atlantic Ocean to the south and west. The human burden on the coast becomes a problem, both because erosion makes the cliffs unstable and because pollution increases, making the fragile dune ecosystem difficult to preserve. It is becoming necessary to increase the control of access to beaches, even if it is not a popular measure for internal and external tourism. The methodology described can also be used to monitor maritime borders. The use of images acquired in the infrared range guarantees active surveillance both day and night, the main objective being to mimic the infrared cameras already installed in some critical areas along the coastline. Using a series of infrared photographs taken at low angles with a modified camera and appropriate filter, a recent deep learning algorithm with the right training can simultaneously detect and count whole people at close range and people almost completely submerged in the water, including partially visible targets, achieving a performance with F1 score of 0.945, with 97% of targets correctly identified. This implementation is possible with ordinary laptop computers and could contribute to more frequent and more extensive coverage in beach/border surveillance, using infrared cameras at regular intervals. It can be partially automated to send alerts to the authorities and/or the nearest lifeguards, thus increasing monitoring without relying on human resources.展开更多
In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system...In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.展开更多
In recent years,karst construction projects in the built-up area of Wuhan(capital of Hubei Province,China)are increasing,and the karst geological disasters have aroused social concerns.The actual engineering projects ...In recent years,karst construction projects in the built-up area of Wuhan(capital of Hubei Province,China)are increasing,and the karst geological disasters have aroused social concerns.The actual engineering projects usually use shallow geophysical exploration methods to explore karst.This paper uses Spatial Auto-Correlation Method(SPAC)and electromagnetic Computerized Tomography(CT)to detect karst in urban built-up areas.Depending on the different physical properties of rock and soil,the SPAC method can better reveal the interface between soil and rock strata and the interface between soil layers.The electromagnetic CT method can identify strata according to the apparent absorption coefficient,which can better reveal the interface between soil and rock,the interface between the more intact and weathered rock.The SPAC method is mainly qualitative to measure the low-speed area,namely,the wrong geological body i.e.,karst cave,but also can detect the fracture zone or filling mode of karst cave,and at the same time,cannot use exploration holes or logging observation.The electromagnetic CT method can accurately detect the location and scale of the karst caves and has a higher accuracy detecting karst bands.In addition,exploration holes or well logging observations are also expected to be conducted,and their detection effect is greatly affected by lithology.展开更多
Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to acces...Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.展开更多
Karst landforms are widely distributed in China,and are most common in Yunnan,Guizhou and Guangxi.If the development of karst caves at the bottom of the piles cannot be accurately ascertained before the construction o...Karst landforms are widely distributed in China,and are most common in Yunnan,Guizhou and Guangxi.If the development of karst caves at the bottom of the piles cannot be accurately ascertained before the construction of bridge pile foundations,accidents such as hole collapse,slurry leakage,and drill sticking will easily occur.In this paper,the principle and method of sonar detection for detecting karst caves at the bottom of bridge piles was introduced,and the sonar detection data and the cave situation at the bottom of the pile during the construction process in combination with the case of Yunnan Zhenguo Highway Project was analyzed,which verifies the practicability and reliability of sonar detection method reliability.展开更多
Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detec...Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method.展开更多
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification...Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.展开更多
A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) method was established for the detection of wheat streak mosaic virus (WSMV). Ac-cording to the conservative regions of the genes that encod...A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) method was established for the detection of wheat streak mosaic virus (WSMV). Ac-cording to the conservative regions of the genes that encode the coat protein of WSMV, 2 pairs of primers were designed. Final y, the 1st pair of primers was select-ed through the specificity test. The sensitivity test showed the sensitivity of RT-LAMP method was 10 times higher than that of RT-PCR. In addition, the amplifica-tion of target gene could be judged visual y from the presence of fluorescence (cal-cein) in the final reaction system. The RT-LAMP method, established in this study, was rapid, easy, specific and sensitive. Moreover, it did not require sophisticated equip-ment. The RT-LAMP was suitable for the rapid detection of WSMV.展开更多
Tobacco leaf shapes including the length,width,area,perimeter and roundness parameters and so on,Only obtain exact boundaries of the leaf information to calculate a large number of leaf parameters.This paper introduce...Tobacco leaf shapes including the length,width,area,perimeter and roundness parameters and so on,Only obtain exact boundaries of the leaf information to calculate a large number of leaf parameters.This paper introduces the classical edge detection Methods,bug method is used to track the boundaries of tobacco leaf extractly.The test shows that the algorithm has a good edge extraction capability.展开更多
The pupil recognition method is helpful in many real-time systems,including ophthalmology testing devices,wheelchair assistance,and so on.The pupil detection system is a very difficult process in a wide range of datas...The pupil recognition method is helpful in many real-time systems,including ophthalmology testing devices,wheelchair assistance,and so on.The pupil detection system is a very difficult process in a wide range of datasets due to problems caused by varying pupil size,occlusion of eyelids,and eyelashes.Deep Convolutional Neural Networks(DCNN)are being used in pupil recognition systems and have shown promising results in terms of accuracy.To improve accuracy and cope with larger datasets,this research work proposes BOC(BAT Optimized CNN)-IrisNet,which consists of optimizing input weights and hidden layers of DCNN using the evolutionary BAT algorithm to efficiently find the human eye pupil region.The proposed method is based on very deep architecture and many tricks from recently developed popular CNNs.Experiment results show that the BOC-IrisNet proposal can efficiently model iris microstructures and provides a stable discriminating iris representation that is lightweight,easy to implement,and of cutting-edge accuracy.Finally,the region-based black box method for determining pupil center coordinates was introduced.The proposed architecture was tested using various IRIS databases,including the CASIA(Chinese academy of the scientific research institute of automation)Iris V4 dataset,which has 99.5%sensitivity and 99.75%accuracy,and the IIT(Indian Institute of Technology)Delhi dataset,which has 99.35%specificity and MMU(Multimedia University)99.45%accuracy,which is higher than the existing architectures.展开更多
It is well known that in most cases, a reference is necessary for structural health diagnosis, and it is very difficult to obtain such a reference for a given structure. In this paper, a clan member signal method (C...It is well known that in most cases, a reference is necessary for structural health diagnosis, and it is very difficult to obtain such a reference for a given structure. In this paper, a clan member signal method (CMSM) is proposed for use in structures consisting of groups (or clans) that have the same geometry, i.e., the same cross section and length, and identical boundary conditions. It is expected that signals measured on any undamaged member in a clan after an event could be used as a reference for any other members in the clan. To verify the applicability of the proposed method, a steel truss model is tested and the results show that the CMSM is very effective in detecting local damage in structures composed of identical slender members.展开更多
Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the...Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.展开更多
Mycotoxins and their derivatives since their discoveries and until the present time are behind unspecified economic and medical damages.Aflatoxins are classified according to their physical–chemical and toxicological...Mycotoxins and their derivatives since their discoveries and until the present time are behind unspecified economic and medical damages.Aflatoxins are classified according to their physical–chemical and toxicological characters in the most dangerous row of the mycotoxins.These aflatoxins are in part responsible,of irreversible medical disasters that are not easily manageable such as cancer of the liver and kidneys,and in the other part,of losses in the stored cereal products.Based on these crucial findings,monitoring of this toxin became imperative in post-harvest food products,during storage,during transformation chain and even during the long phases of conservation.Vigilance of this toxin is delivered by detection methods using very advanced technologies to respond in the shortest possible times.In addition,the knowledge of factors supporting the biosynthesis of aflatoxins such as the temperature,moisture content,concentration of nitrogen and carbon,and the molecules responsible for the genetic control of the synthesis will be reflected later in the choice of bio-control techniques.This control is currently based on new strategies using the bioactives substances of the plants,the lactic bacteria and some strains of actinomycetes that have good inhibiting activity against aflatoxins with fewer side effects on Man.On the other hand,this brief review summarizes the results of new studies demonstrating the toxicity of the toxin,new detection methods and bio-control.展开更多
Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we use...Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.展开更多
基金This research was funded by the Scientific Research Project of Leshan Normal University(No.2022SSDX002)the Scientific Plan Project of Leshan(No.22NZD012).
文摘Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method.The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements.Then,to improve the accuracy of similarity calculation,a quantitative matching method is proposed.The model uses mathematical methods to train and evolve immune elements,increasing the diversity of immune recognition and allowing for the successful detection of unknown intrusions.The proposed model’s objective is to accurately identify known intrusions and expand the identification of unknown intrusions through signature detection and immune detection,overcoming the disadvantages of traditional methods.The experiment results show that the proposed model can detect intrusions effectively.It has a detection rate of more than 99.6%on average and a false alarm rate of 0.0264%.It outperforms existing immune intrusion detection methods in terms of comprehensive detection performance.
文摘Microplastics are plastic particles or fibers with a diameter of less than 5 mm,and they widely exist in the environment and pose potential risks to the ecosystem and human health.Microplastics detection can provide basic data for formulating effective environmental protection strategies.In this paper,the physical,chemical and biological detection methods of microplastics are reviewed,and the advantages and disadvantages of different methods are analyzed.The problems and challenges encountered in microplastics detection are analyzed,and the future research is discussed.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.
基金Supported by the National Natural Science Foundation of China under Grant(62301330,62101346)the Guangdong Basic and Applied Basic Research Foundation(2024A1515010496,2022A1515110101)+1 种基金the Stable Support Plan for Shenzhen Higher Education Institutions(20231121103807001)the Guangdong Provincial Key Laboratory under(2023B1212060076).
文摘Background Co-salient object detection(Co-SOD)aims to identify and segment commonly salient objects in a set of related images.However,most current Co-SOD methods encounter issues with the inclusion of irrelevant information in the co-representation.These issues hamper their ability to locate co-salient objects and significantly restrict the accuracy of detection.Methods To address this issue,this study introduces a novel Co-SOD method with iterative purification and predictive optimization(IPPO)comprising a common salient purification module(CSPM),predictive optimizing module(POM),and diminishing mixed enhancement block(DMEB).Results These components are designed to explore noise-free joint representations,assist the model in enhancing the quality of the final prediction results,and significantly improve the performance of the Co-SOD algorithm.Furthermore,through a comprehensive evaluation of IPPO and state-of-the-art algorithms focusing on the roles of CSPM,POM,and DMEB,our experiments confirmed that these components are pivotal in enhancing the performance of the model,substantiating the significant advancements of our method over existing benchmarks.Experiments on several challenging benchmark co-saliency datasets demonstrate that the proposed IPPO achieves state-of-the-art performance.
文摘Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.
文摘This work focuses on the problem of monitoring the coastline, which in Portugal’s case means monitoring 3007 kilometers, including 1793 maritime borders with the Atlantic Ocean to the south and west. The human burden on the coast becomes a problem, both because erosion makes the cliffs unstable and because pollution increases, making the fragile dune ecosystem difficult to preserve. It is becoming necessary to increase the control of access to beaches, even if it is not a popular measure for internal and external tourism. The methodology described can also be used to monitor maritime borders. The use of images acquired in the infrared range guarantees active surveillance both day and night, the main objective being to mimic the infrared cameras already installed in some critical areas along the coastline. Using a series of infrared photographs taken at low angles with a modified camera and appropriate filter, a recent deep learning algorithm with the right training can simultaneously detect and count whole people at close range and people almost completely submerged in the water, including partially visible targets, achieving a performance with F1 score of 0.945, with 97% of targets correctly identified. This implementation is possible with ordinary laptop computers and could contribute to more frequent and more extensive coverage in beach/border surveillance, using infrared cameras at regular intervals. It can be partially automated to send alerts to the authorities and/or the nearest lifeguards, thus increasing monitoring without relying on human resources.
文摘In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments.
文摘In recent years,karst construction projects in the built-up area of Wuhan(capital of Hubei Province,China)are increasing,and the karst geological disasters have aroused social concerns.The actual engineering projects usually use shallow geophysical exploration methods to explore karst.This paper uses Spatial Auto-Correlation Method(SPAC)and electromagnetic Computerized Tomography(CT)to detect karst in urban built-up areas.Depending on the different physical properties of rock and soil,the SPAC method can better reveal the interface between soil and rock strata and the interface between soil layers.The electromagnetic CT method can identify strata according to the apparent absorption coefficient,which can better reveal the interface between soil and rock,the interface between the more intact and weathered rock.The SPAC method is mainly qualitative to measure the low-speed area,namely,the wrong geological body i.e.,karst cave,but also can detect the fracture zone or filling mode of karst cave,and at the same time,cannot use exploration holes or logging observation.The electromagnetic CT method can accurately detect the location and scale of the karst caves and has a higher accuracy detecting karst bands.In addition,exploration holes or well logging observations are also expected to be conducted,and their detection effect is greatly affected by lithology.
文摘Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.
文摘Karst landforms are widely distributed in China,and are most common in Yunnan,Guizhou and Guangxi.If the development of karst caves at the bottom of the piles cannot be accurately ascertained before the construction of bridge pile foundations,accidents such as hole collapse,slurry leakage,and drill sticking will easily occur.In this paper,the principle and method of sonar detection for detecting karst caves at the bottom of bridge piles was introduced,and the sonar detection data and the cave situation at the bottom of the pile during the construction process in combination with the case of Yunnan Zhenguo Highway Project was analyzed,which verifies the practicability and reliability of sonar detection method reliability.
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(20110162130008)supported by the PhD Program Foundation of Ministry of Education of ChinaProject(2011BAB04B08)supported by the National Key Technology R&D Program during the 12th Five-Year Plan of China
文摘Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method.
基金The National High Technology Research and Develop-ment Program of China(863Program)(No.2006AA04Z416)the Na-tional Science Fund for Distinguished Young Scholars(No.50725828)the Excellent Dissertation Program for Doctoral Degree of Southeast University(No.0705)
文摘Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.
文摘A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) method was established for the detection of wheat streak mosaic virus (WSMV). Ac-cording to the conservative regions of the genes that encode the coat protein of WSMV, 2 pairs of primers were designed. Final y, the 1st pair of primers was select-ed through the specificity test. The sensitivity test showed the sensitivity of RT-LAMP method was 10 times higher than that of RT-PCR. In addition, the amplifica-tion of target gene could be judged visual y from the presence of fluorescence (cal-cein) in the final reaction system. The RT-LAMP method, established in this study, was rapid, easy, specific and sensitive. Moreover, it did not require sophisticated equip-ment. The RT-LAMP was suitable for the rapid detection of WSMV.
基金Supported by Key Technologies R & D Program of Henan Province(082102210065)Natural Science Research Project of Henan Educational Committee(2007210005)~~
文摘Tobacco leaf shapes including the length,width,area,perimeter and roundness parameters and so on,Only obtain exact boundaries of the leaf information to calculate a large number of leaf parameters.This paper introduces the classical edge detection Methods,bug method is used to track the boundaries of tobacco leaf extractly.The test shows that the algorithm has a good edge extraction capability.
文摘The pupil recognition method is helpful in many real-time systems,including ophthalmology testing devices,wheelchair assistance,and so on.The pupil detection system is a very difficult process in a wide range of datasets due to problems caused by varying pupil size,occlusion of eyelids,and eyelashes.Deep Convolutional Neural Networks(DCNN)are being used in pupil recognition systems and have shown promising results in terms of accuracy.To improve accuracy and cope with larger datasets,this research work proposes BOC(BAT Optimized CNN)-IrisNet,which consists of optimizing input weights and hidden layers of DCNN using the evolutionary BAT algorithm to efficiently find the human eye pupil region.The proposed method is based on very deep architecture and many tricks from recently developed popular CNNs.Experiment results show that the BOC-IrisNet proposal can efficiently model iris microstructures and provides a stable discriminating iris representation that is lightweight,easy to implement,and of cutting-edge accuracy.Finally,the region-based black box method for determining pupil center coordinates was introduced.The proposed architecture was tested using various IRIS databases,including the CASIA(Chinese academy of the scientific research institute of automation)Iris V4 dataset,which has 99.5%sensitivity and 99.75%accuracy,and the IIT(Indian Institute of Technology)Delhi dataset,which has 99.35%specificity and MMU(Multimedia University)99.45%accuracy,which is higher than the existing architectures.
基金Chinese Ministry of Science and Technology and National Natural Science Foundation Under Grant No. 2006DFB71680
文摘It is well known that in most cases, a reference is necessary for structural health diagnosis, and it is very difficult to obtain such a reference for a given structure. In this paper, a clan member signal method (CMSM) is proposed for use in structures consisting of groups (or clans) that have the same geometry, i.e., the same cross section and length, and identical boundary conditions. It is expected that signals measured on any undamaged member in a clan after an event could be used as a reference for any other members in the clan. To verify the applicability of the proposed method, a steel truss model is tested and the results show that the CMSM is very effective in detecting local damage in structures composed of identical slender members.
基金Supported by National Natural Science Foundation of China(Grant No.51607180)
文摘Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estima- tion cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the fre- quencies of the fundamental and fault characteristic com- ponents with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.
文摘Mycotoxins and their derivatives since their discoveries and until the present time are behind unspecified economic and medical damages.Aflatoxins are classified according to their physical–chemical and toxicological characters in the most dangerous row of the mycotoxins.These aflatoxins are in part responsible,of irreversible medical disasters that are not easily manageable such as cancer of the liver and kidneys,and in the other part,of losses in the stored cereal products.Based on these crucial findings,monitoring of this toxin became imperative in post-harvest food products,during storage,during transformation chain and even during the long phases of conservation.Vigilance of this toxin is delivered by detection methods using very advanced technologies to respond in the shortest possible times.In addition,the knowledge of factors supporting the biosynthesis of aflatoxins such as the temperature,moisture content,concentration of nitrogen and carbon,and the molecules responsible for the genetic control of the synthesis will be reflected later in the choice of bio-control techniques.This control is currently based on new strategies using the bioactives substances of the plants,the lactic bacteria and some strains of actinomycetes that have good inhibiting activity against aflatoxins with fewer side effects on Man.On the other hand,this brief review summarizes the results of new studies demonstrating the toxicity of the toxin,new detection methods and bio-control.
基金support received from the National Basic Research Program of China (No2007CB209400)the National Natural Science Foundation of China (No50774085)the Young Scientists Fund of the School Science Foundation of CUMT (No2008A046)
文摘Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored.