The airborne missile launch mechanism often subjects to significant deformations induced by the large ejection force during high-speed actuations in missile ejection process,leading to a substantial deviation of separ...The airborne missile launch mechanism often subjects to significant deformations induced by the large ejection force during high-speed actuations in missile ejection process,leading to a substantial deviation of separation parameters from designed values that threats safety of the carrier.This study proposes a novel variable topology design for launch mechanism,achieved via a Prsmatic-Revolute-Revolute pair(PR-R)motion formed by the structural gap with a specific direction.It enables launch mechanism variability during missile ejection process and optimizes the ejection force given by the front and back ejection arms,and greatly optimizes the separation parameters during missile ejection.The kinetics simulation analysis is conducted under working conditions of the original ejection mechanism and the novel mechanism with variable topology design,respectively.The results show that the novel variable topology design is more befitting for the launch process in terms of system safety and controllability,effectively improving the separation posture,restraining the flexible effect of the mechanism,and fulfilling the effectiveness of the design value of multi-rigid body.展开更多
Recent development of the dynamic analysis technique has made it possible to measure separately kinetic parameters of a catalytic reaction as well as to study the effect of catalyst preparation parameters. But its app...Recent development of the dynamic analysis technique has made it possible to measure separately kinetic parameters of a catalytic reaction as well as to study the effect of catalyst preparation parameters. But its application is still limned to first-order reaction. This work is aimed to demonstrate in some detail that,by comparison of the reaction rate expressions with the two-step mechanism used in catalytic kinetics and dynamic analysis, these methods can be extended to non-first-order reaction, and the kinetic parameters measured by dynamic techniques are interpreted for different reaction mechanisms.展开更多
The actuation mechanism of TiNi shape memory alloy wires, which were deformed at parent phase followed by a cooling process under constant strain constraint, was investigated. The experimental results show that the tw...The actuation mechanism of TiNi shape memory alloy wires, which were deformed at parent phase followed by a cooling process under constant strain constraint, was investigated. The experimental results show that the two-step reverse martensitic transformation behavior occurs during the heating process, and the temperature range of reverse transformation was obviously widened with the increasing of prestrain. The recovery strain vs temperature curves exhibits an actuation characteristic of linear output recovery strain in a wide temperature range.展开更多
A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic gla...A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic glass composites(Wp/BMGCs).Compared to normal spark plasma sintering(NS),the densification rate and relative density of Wp/BMGCs can be improved by selecting TSS with appropriate sintering pressure in the low temperature pre-sintering stage.However,the compressive strength and plastic strain of 30%Wp/BMGCs prepared by TSS are both higher than those of the samples prepared by NS.The TSS process can significantly enhance the compressive strength of 30%Wp/BMGCs by 12%and remarkably increase the plastic strain by 50%,while the trend is completely opposite for 50%Wp/BMGCs.Quasi-in situ experiments and finite element simulations reveal that uneven temperature distribution among particles during low-temperature pre-sintering causes local overheating at contact points between particles,accelerating formation of sintering neck between particles and plastic deformation of Wp.When the volume fraction of Wp is low,TSS can improve the interface bonding between particles by increasing the number of sintering necks.This makes the fracture mode of Wp/BMGCs being predominantly transgranular fracture.However,as the volume fraction of Wp increases,the adverse effects of Wp plastic deformation are becoming more and more prominent.The aggregated Wp tends to form a solid"cage structure"that hinders the bonding between particles at the interface;correspondingly,the fracture behavior of Wp/BMGCs is mainly dominated by intergranular fracture.Additionally,reducing the sintering pressure during the low-temperature pre-sintering stage of TSS has been shown to effectively decrease plastic deformation in Wp,resulting in a higher degree of densification and better mechanical properties.展开更多
It is challenging to assess the mechanism responsible for the nucleation of inclusions in metals at high temperatures.The present work therefore systematically investigates the nucleation of cerium oxide inclusions ac...It is challenging to assess the mechanism responsible for the nucleation of inclusions in metals at high temperatures.The present work therefore systematically investigates the nucleation of cerium oxide inclusions according to classical nucleation theory and a two-step nucleation mechanism.The nucleation rates and nucleation radii of these inclusions are obtained,and the results demonstrate a considerable difference between theoretical and experimental values.On the basis of a two-step nucleation mechanism,(CeO_(2))_(n) and(Ce_(2)O_(3))_(n)(n=1-6)clusters were constructed and the thermodynamic properties of both these clusters and of cerium oxide nanoparticles were analyzed.In addition,the entropies and heat capacity changes of cerium oxides were determined using first principles calculations and are found to be consistent with literature data.The present data indicate that the cerium oxide inclusion nucleation pathway can be summarized as[Ce]+[O]→(CeO_(2))n/(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(2)→core(Ce_(2)O_(3)crystal)-shell((Ce_(2)O_(3))_(2) cluster)nanoparticles→(Ce_(2)O_(3))bulk.展开更多
Ti-6Al-4V alloy powder was prepared through a two-step reduction of a mixture of TiO_(2),V_(2)O_(5) and Al_(2)O_(3) in this study.The oxide mixture was first reduced by Mg in MgCl_(2) at 750℃ in argon,where oxygen wa...Ti-6Al-4V alloy powder was prepared through a two-step reduction of a mixture of TiO_(2),V_(2)O_(5) and Al_(2)O_(3) in this study.The oxide mixture was first reduced by Mg in MgCl_(2) at 750℃ in argon,where oxygen was reduced to 2.47 wt%from 40.02 wt%.The oxygen content in the final powder was eventually reduced to an extremely low level(0.055 wt%)using calcium at 900℃ in argon,and the final powder had the composition of 90.12 wt%Ti,5.57 wt%Al,and 3.87 wt%V,which meets the standard specification of Ti-6Al-4V(ASTM F1108-09).Between the two reductions,a heat treatment step was designed to help controlling the specific surface area and particle size.The effect of the heat treatment temperature on the morphology,and composition uniformity of the powder was investigated in detail.Heat treatment above 1300℃ attributed to a dense powder with a controlled specific surface area.Thermodynamic modeling and experimental results indicated that onlyα-Ti enriched with Al andβ-Ti enriched with V exist in the final powder,and other possible phases including Al-Mg and Al-V were excluded.This study also offers a triple-step thermochemical process for producing high-purity Ti-based alloy powder.展开更多
The effects of the two-step ageing parameters (temperature and time) on the mechanical properties and electrical conductivity of 7B04 (A1-Zn-Mg-Cu) pre-stretched thick plates were studied. The results reveal that ...The effects of the two-step ageing parameters (temperature and time) on the mechanical properties and electrical conductivity of 7B04 (A1-Zn-Mg-Cu) pre-stretched thick plates were studied. The results reveal that the initial T1 ageing contributes a major increase of the tensile strength, and the 0.2% proof stress value reaches 482 MPa after ageing for 7 h at 115℃. Behavioral differences in the tensile properties of the alloy after the two-step ageing treatment were less with the first-step ageing at 115~C for different time periods (7, 14, and 21 h). The effects of the second ageing parameters on the properties and microstructure of the 7B04 alloy were remarkable. TEM analysis of the samples aged at Temper I (7 h at 115℃ + 12 h at 160℃) and Temper II (7 h at 115℃ + 16 h at 165℃) indicates that two kinds of phases, i.e. 11' and 11 phases, precipitate from the matrix and efficiently improve the tensile strength of the alloy, and the grain boundary precipitates are coarse and discrete. There are obvious precipitate free zones (PFZs) along the grain boundary in the microstructure of the alloy after the two-step ageing treatment.展开更多
The effect of Cu content on the microstructures and mechanical properties (yield strength, ultimate tensile strength, impact energy, fracture toughness) of austempering ductile iron (ADI) treated by two-step austemper...The effect of Cu content on the microstructures and mechanical properties (yield strength, ultimate tensile strength, impact energy, fracture toughness) of austempering ductile iron (ADI) treated by two-step austempering process were investigated. High Cu content in nodular cast irons leads to a significant volume fraction of retained austenite in the iron after austempering treatment, but the carbon content of austenite decreases with the increasing of Cu content. Moreover, austenitic stability reaches its maximum when the Cu content is 1.4% and then drops rapidly with further increase of Cu. The ultimate tensile strength and yield strength of the ADI firstly increases and then decreases with increasing the Cu content. The elongation keeps constant at 6.5% as the Cu content increases from 0.2% to 1.4%, and then increases rapidly to 10.0% with further increase Cu content to 2.0%. Impact toughness is enhanced with Cu increasing at first, and reaches a maximum 122.9 J at 1.4% Cu, then decreases with the further increase of Cu. The fracture toughness of ADI shows a constant increase with the increase of Cu content. The influencing mechanism of Cu on austempered ductile iron (ADI) can be classified into two aspects. On the one hand, Cu dissolves into the matrix and functions as solid solution strengthening. On the other hand, Cu reduces solubility of C in austenite and contributes more stable retained austenite.展开更多
基金funding support,which is Aerospace Science Foundation(NO.2017ZC12008)。
文摘The airborne missile launch mechanism often subjects to significant deformations induced by the large ejection force during high-speed actuations in missile ejection process,leading to a substantial deviation of separation parameters from designed values that threats safety of the carrier.This study proposes a novel variable topology design for launch mechanism,achieved via a Prsmatic-Revolute-Revolute pair(PR-R)motion formed by the structural gap with a specific direction.It enables launch mechanism variability during missile ejection process and optimizes the ejection force given by the front and back ejection arms,and greatly optimizes the separation parameters during missile ejection.The kinetics simulation analysis is conducted under working conditions of the original ejection mechanism and the novel mechanism with variable topology design,respectively.The results show that the novel variable topology design is more befitting for the launch process in terms of system safety and controllability,effectively improving the separation posture,restraining the flexible effect of the mechanism,and fulfilling the effectiveness of the design value of multi-rigid body.
文摘Recent development of the dynamic analysis technique has made it possible to measure separately kinetic parameters of a catalytic reaction as well as to study the effect of catalyst preparation parameters. But its application is still limned to first-order reaction. This work is aimed to demonstrate in some detail that,by comparison of the reaction rate expressions with the two-step mechanism used in catalytic kinetics and dynamic analysis, these methods can be extended to non-first-order reaction, and the kinetic parameters measured by dynamic techniques are interpreted for different reaction mechanisms.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .5 0 0 710 37)
文摘The actuation mechanism of TiNi shape memory alloy wires, which were deformed at parent phase followed by a cooling process under constant strain constraint, was investigated. The experimental results show that the two-step reverse martensitic transformation behavior occurs during the heating process, and the temperature range of reverse transformation was obviously widened with the increasing of prestrain. The recovery strain vs temperature curves exhibits an actuation characteristic of linear output recovery strain in a wide temperature range.
基金financially supported by the National Natural Science Foundation of China(Nos.52371154,52090043,52175371 and 52271147)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012158)+1 种基金the Knowledge Innovation Program of Wuhan-Basic Researchthe Fundamental Research Funds for the Central Universities(No.2021GCRC003)。
文摘A new two-step spark plasma sintering(TSS)process with low-temperature pre-sintering and high-temperature final sintering has been successfully applied to prepare the tungsten-particle(Wp)-reinforced bulk metallic glass composites(Wp/BMGCs).Compared to normal spark plasma sintering(NS),the densification rate and relative density of Wp/BMGCs can be improved by selecting TSS with appropriate sintering pressure in the low temperature pre-sintering stage.However,the compressive strength and plastic strain of 30%Wp/BMGCs prepared by TSS are both higher than those of the samples prepared by NS.The TSS process can significantly enhance the compressive strength of 30%Wp/BMGCs by 12%and remarkably increase the plastic strain by 50%,while the trend is completely opposite for 50%Wp/BMGCs.Quasi-in situ experiments and finite element simulations reveal that uneven temperature distribution among particles during low-temperature pre-sintering causes local overheating at contact points between particles,accelerating formation of sintering neck between particles and plastic deformation of Wp.When the volume fraction of Wp is low,TSS can improve the interface bonding between particles by increasing the number of sintering necks.This makes the fracture mode of Wp/BMGCs being predominantly transgranular fracture.However,as the volume fraction of Wp increases,the adverse effects of Wp plastic deformation are becoming more and more prominent.The aggregated Wp tends to form a solid"cage structure"that hinders the bonding between particles at the interface;correspondingly,the fracture behavior of Wp/BMGCs is mainly dominated by intergranular fracture.Additionally,reducing the sintering pressure during the low-temperature pre-sintering stage of TSS has been shown to effectively decrease plastic deformation in Wp,resulting in a higher degree of densification and better mechanical properties.
基金Project supported by the National Natural Science Foundation of China(52064011,52274331)Science and Technology Planning Project of Guizhou(Qian Ke He Ji Chu ZK[2021]258,Qian Ke He Chengguo[2022]089,Qian Ke He Chengguo[2021]086)。
文摘It is challenging to assess the mechanism responsible for the nucleation of inclusions in metals at high temperatures.The present work therefore systematically investigates the nucleation of cerium oxide inclusions according to classical nucleation theory and a two-step nucleation mechanism.The nucleation rates and nucleation radii of these inclusions are obtained,and the results demonstrate a considerable difference between theoretical and experimental values.On the basis of a two-step nucleation mechanism,(CeO_(2))_(n) and(Ce_(2)O_(3))_(n)(n=1-6)clusters were constructed and the thermodynamic properties of both these clusters and of cerium oxide nanoparticles were analyzed.In addition,the entropies and heat capacity changes of cerium oxides were determined using first principles calculations and are found to be consistent with literature data.The present data indicate that the cerium oxide inclusion nucleation pathway can be summarized as[Ce]+[O]→(CeO_(2))n/(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(n)→(Ce_(2)O_(3))_(2)→core(Ce_(2)O_(3)crystal)-shell((Ce_(2)O_(3))_(2) cluster)nanoparticles→(Ce_(2)O_(3))bulk.
基金Project(52004342) supported by the National Natural Science Foundation of ChinaProject(150240015) supported by the Innovation-Driven Project of Central South University,ChinaProject(2021JJ20065) supported by the Natural Science Fund for Outstanding Young Scholar of Hunan Province,China。
文摘Ti-6Al-4V alloy powder was prepared through a two-step reduction of a mixture of TiO_(2),V_(2)O_(5) and Al_(2)O_(3) in this study.The oxide mixture was first reduced by Mg in MgCl_(2) at 750℃ in argon,where oxygen was reduced to 2.47 wt%from 40.02 wt%.The oxygen content in the final powder was eventually reduced to an extremely low level(0.055 wt%)using calcium at 900℃ in argon,and the final powder had the composition of 90.12 wt%Ti,5.57 wt%Al,and 3.87 wt%V,which meets the standard specification of Ti-6Al-4V(ASTM F1108-09).Between the two reductions,a heat treatment step was designed to help controlling the specific surface area and particle size.The effect of the heat treatment temperature on the morphology,and composition uniformity of the powder was investigated in detail.Heat treatment above 1300℃ attributed to a dense powder with a controlled specific surface area.Thermodynamic modeling and experimental results indicated that onlyα-Ti enriched with Al andβ-Ti enriched with V exist in the final powder,and other possible phases including Al-Mg and Al-V were excluded.This study also offers a triple-step thermochemical process for producing high-purity Ti-based alloy powder.
基金the National High-Tech Research Development Program of China (No. 2003AA331100).
文摘The effects of the two-step ageing parameters (temperature and time) on the mechanical properties and electrical conductivity of 7B04 (A1-Zn-Mg-Cu) pre-stretched thick plates were studied. The results reveal that the initial T1 ageing contributes a major increase of the tensile strength, and the 0.2% proof stress value reaches 482 MPa after ageing for 7 h at 115℃. Behavioral differences in the tensile properties of the alloy after the two-step ageing treatment were less with the first-step ageing at 115~C for different time periods (7, 14, and 21 h). The effects of the second ageing parameters on the properties and microstructure of the 7B04 alloy were remarkable. TEM analysis of the samples aged at Temper I (7 h at 115℃ + 12 h at 160℃) and Temper II (7 h at 115℃ + 16 h at 165℃) indicates that two kinds of phases, i.e. 11' and 11 phases, precipitate from the matrix and efficiently improve the tensile strength of the alloy, and the grain boundary precipitates are coarse and discrete. There are obvious precipitate free zones (PFZs) along the grain boundary in the microstructure of the alloy after the two-step ageing treatment.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51374086 and 51674094)
文摘The effect of Cu content on the microstructures and mechanical properties (yield strength, ultimate tensile strength, impact energy, fracture toughness) of austempering ductile iron (ADI) treated by two-step austempering process were investigated. High Cu content in nodular cast irons leads to a significant volume fraction of retained austenite in the iron after austempering treatment, but the carbon content of austenite decreases with the increasing of Cu content. Moreover, austenitic stability reaches its maximum when the Cu content is 1.4% and then drops rapidly with further increase of Cu. The ultimate tensile strength and yield strength of the ADI firstly increases and then decreases with increasing the Cu content. The elongation keeps constant at 6.5% as the Cu content increases from 0.2% to 1.4%, and then increases rapidly to 10.0% with further increase Cu content to 2.0%. Impact toughness is enhanced with Cu increasing at first, and reaches a maximum 122.9 J at 1.4% Cu, then decreases with the further increase of Cu. The fracture toughness of ADI shows a constant increase with the increase of Cu content. The influencing mechanism of Cu on austempered ductile iron (ADI) can be classified into two aspects. On the one hand, Cu dissolves into the matrix and functions as solid solution strengthening. On the other hand, Cu reduces solubility of C in austenite and contributes more stable retained austenite.