期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
1
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 adaptive adjacency matrix Digital twin graph convolutional network Multivariate time series prediction Spatial-temporal graph
下载PDF
Adaptive Graph Convolutional Recurrent Neural Networks for System-Level Mobile Traffic Forecasting
2
作者 Yi Zhang Min Zhang +4 位作者 Yihan Gui Yu Wang Hong Zhu Wenbin Chen Danshi Wang 《China Communications》 SCIE CSCD 2023年第10期200-211,共12页
Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges ... Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches. 展开更多
关键词 adaptive graph convolutional network mobile traffic prediction spatial-temporal dependence
下载PDF
A Graph with Adaptive AdjacencyMatrix for Relation Extraction
3
作者 Run Yang YanpingChen +1 位作者 Jiaxin Yan Yongbin Qin 《Computers, Materials & Continua》 SCIE EI 2024年第9期4129-4147,共19页
The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes de... The relation is a semantic expression relevant to two named entities in a sentence.Since a sentence usually contains several named entities,it is essential to learn a structured sentence representation that encodes dependency information specific to the two named entities.In related work,graph convolutional neural networks are widely adopted to learn semantic dependencies,where a dependency tree initializes the adjacency matrix.However,this approach has two main issues.First,parsing a sentence heavily relies on external toolkits,which can be errorprone.Second,the dependency tree only encodes the syntactical structure of a sentence,which may not align with the relational semantic expression.In this paper,we propose an automatic graph learningmethod to autonomously learn a sentence’s structural information.Instead of using a fixed adjacency matrix initialized by a dependency tree,we introduce an Adaptive Adjacency Matrix to encode the semantic dependency between tokens.The elements of thismatrix are dynamically learned during the training process and optimized by task-relevant learning objectives,enabling the construction of task-relevant semantic dependencies within a sentence.Our model demonstrates superior performance on the TACRED and SemEval 2010 datasets,surpassing previous works by 1.3%and 0.8%,respectively.These experimental results show that our model excels in the relation extraction task,outperforming prior models. 展开更多
关键词 Relation extraction graph convolutional neural network adaptive adjacency matrix
下载PDF
基于动态自适应图神经网络的电动汽车充电负荷预测 被引量:1
4
作者 张延宇 张智铭 +2 位作者 刘春阳 张西镚 周毅 《电力系统自动化》 EI CSCD 北大核心 2024年第7期86-93,共8页
电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自... 电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自适应相关图结合生成具有时空关联性的综合特征表达式,以捕获充电站负荷的波动性;然后,将提取的特征输入到时空卷积层,捕获时间和空间之间的耦合关系;最后,通过切比雪夫多项式图卷积与多尺度时间卷积提升模型耦合长时间序列之间的能力。以Palo Alto数据集为例,与现有方法相比,所提算法在4种波动情况下的平均预测误差大幅降低。 展开更多
关键词 电动汽车 负荷预测 时空关联特征 自适应图神经网络 注意力机制 时空卷积层
下载PDF
融合自适应周期与兴趣量因子的轻量级GCN推荐 被引量:1
5
作者 钱忠胜 叶祖铼 +3 位作者 姚昌森 张丁 黄恒 秦朗悦 《软件学报》 EI CSCD 北大核心 2024年第6期2974-2998,共25页
推荐系统在成熟的数据挖掘技术推动下,已能高效地利用评分数据、行为轨迹等显隐性信息,再与复杂而先进的深度学习技术相结合,取得了很好的效果.同时,其应用需求也驱动着对基础数据的深度挖掘与利用,以及对技术要求的减负成为一个研究热... 推荐系统在成熟的数据挖掘技术推动下,已能高效地利用评分数据、行为轨迹等显隐性信息,再与复杂而先进的深度学习技术相结合,取得了很好的效果.同时,其应用需求也驱动着对基础数据的深度挖掘与利用,以及对技术要求的减负成为一个研究热点.基于此,提出一种利用GCN(graph convolutional network)方法进行深度信息融合的轻量级推荐模型LG_APIF.该模型结合行为记忆,通过艾宾浩斯遗忘曲线模拟用户兴趣变化过程,采用线性回归等相对轻量的传统方法挖掘项目的自适应周期等深度信息;分析用户当前的兴趣分布,计算项目的兴趣量,以获取用户的潜在兴趣类型;构建用户-类型-项目三元组的图结构,并结合减负后的GCN技术来生成最终的项目推荐列表.实验验证所提方法的有效性,通过与8个经典模型在Last.fm,Douban,Yelp,MovieLens数据集中的对比,表明该方法在Precision,Recall及NDCG指标上都得到良好改善,其中,Precision平均提升2.11%,Recall平均提升1.01%,NDCG平均提升1.48%. 展开更多
关键词 行为记忆 自适应周期 兴趣量因子 图卷积网络 推荐系统
下载PDF
基于双流自适应图卷积网络的管制员睡岗行为识别 被引量:1
6
作者 王超 王志锋 李雯清 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期596-601,共6页
为识别空中交通管制员的睡岗行为,减少管制差错,保障航空器飞行安全,提出了一种基于双流自适应图卷积网络的管制员睡岗行为识别方法。该方法设计双流网络分别处理管制员骨架的一阶信息和二阶信息,实现对骨架数据的充分提取;通过自适应... 为识别空中交通管制员的睡岗行为,减少管制差错,保障航空器飞行安全,提出了一种基于双流自适应图卷积网络的管制员睡岗行为识别方法。该方法设计双流网络分别处理管制员骨架的一阶信息和二阶信息,实现对骨架数据的充分提取;通过自适应学习的骨骼拓扑连接矩阵,挖掘管制员不同关节之间的功能连接关系;同时在卷积层引入时空通道注意力机制,增强管制员睡岗行为识别模型在时间、空间、通道3个方向提取重要信息的能力。仿真结果表明,该方法能有效识别管制员3种睡岗行为,相较于传统的时空图卷积网络,识别准确率提高了3.08百分点,达到95.03%,可以提高民航运行安全管理水平。 展开更多
关键词 安全社会工程 睡岗行为 空中交通管制员 自适应图卷积网络 行为识别
下载PDF
变工况下动态卷积域对抗图神经网络故障诊断
7
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督域自适应 动态卷积 域对抗 图神经网络 图生成 高斯Wasserstein距离 故障诊断 变工况
下载PDF
融合自注意力和图卷积的多视图群组推荐
8
作者 王永贵 王芯茹 《计算机工程与应用》 CSCD 北大核心 2024年第8期287-295,共9页
为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群... 为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群组、用户和项目三者之间的高阶交互信息,缓解数据稀疏问题,增强群组表示建模过程;对于项目级视图,利用基于二分图的图卷积神经网络来学习群组偏好向量以及项目嵌入;进一步提出了自适应融合组件来动态调整不同视图权重,得到最终的群组偏好向量。在两个真实数据集上的实验结果表明,与基线模型相比,MVGR模型的命中率(HR)和归一化折损累计增益(NDCG)在Mafengwo数据集上平均提高了8.89个百分点和1.56个百分点,在CAMRa2011数据集上平均提高了2.79个百分点和2.7个百分点。 展开更多
关键词 群组推荐 自注意力机制 图卷积神经网络 自适应融合
下载PDF
基于时空特征挖掘的特高压变压器热状态参量预测方法 被引量:2
9
作者 林蔚青 缪希仁 +4 位作者 肖洒 江灏 卢燕臻 邱星华 阴存翊 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1649-1661,I0033,共14页
热状态参量预测是特高压变压器绝缘老化评估及故障预警的重要技术方法。然而,现有预测方法侧重高维时间序列分析以构建数据驱动模型,未计及设备内部温度潜在的空间变化规律,为此,提出一种基于时空特征挖掘的特高压变压器热状态参量预测... 热状态参量预测是特高压变压器绝缘老化评估及故障预警的重要技术方法。然而,现有预测方法侧重高维时间序列分析以构建数据驱动模型,未计及设备内部温度潜在的空间变化规律,为此,提出一种基于时空特征挖掘的特高压变压器热状态参量预测方法。首先,综合考虑多源数据间的相关度与冗余度,提出组合特征筛选策略寻找最优特征子集;其次,结合热状态参量的最优特征子集及相关系数,构建面向热状态参量预测的时空图数据;最后,建立双重自适应图卷积门控循环单元(dualadaptivegraphconvolutiongate recurrent unit,DA-GCGRU)模型,采用节点自适应模块强化油箱内不同部位温度变化趋势的拟合,以适应特定温升趋势;采用图自适应模块自主学习热状态参量的空间温度分布关联性,以推断空间映射关系。实验结果表明,该方法可深度挖掘特高压变压器内部温度的时空变化特性,准确预测绕组温度和顶层油温的变化趋势,具有较好的鲁棒性和泛化性。 展开更多
关键词 特高压变压器 绕组温度 顶层油温 自适应 图卷积网络 门控循环单元
下载PDF
基于二重语义相关性图卷积网络的跨模态检索方法 被引量:2
10
作者 刘佳楠 范晶晶 +1 位作者 赵建光 朱杰 《计算机应用研究》 CSCD 北大核心 2024年第4期1239-1246,共8页
随着深度神经网络的不断发展,跨模态检索模型的构建也随之取得了长足的进步。以图卷积网络(GCN)为基础的跨模态检索方法可以较好地捕获数据的语义相关性,因此越来越受到人们的关注。但是,目前大部分研究多将标签之间和样本之间的相关性... 随着深度神经网络的不断发展,跨模态检索模型的构建也随之取得了长足的进步。以图卷积网络(GCN)为基础的跨模态检索方法可以较好地捕获数据的语义相关性,因此越来越受到人们的关注。但是,目前大部分研究多将标签之间和样本之间的相关性融入到跨模态表示当中,并没有考虑到标签集合之间的相关性对于跨模态检索模型性能的影响。在多标签场景下,标签集合之间的多标签相关性可以有效地描述对应样本之间的语义关系,因此充分发现多标签相关性并将其融入到跨模态表示中,对于提高跨模态检索模型的性能有着重要的意义。提出了一种基于二重语义相关性图卷积网络(dual semantic correlation graph convolutional networks,DSCGCN)的跨模态检索方法,该方法利用GCN自适应地发现标签之间和多标签之间的语义相关性,并将此二重语义相关性融入到样本公共表示中。此外,还提出了一种多标签相似性损失,用于使生成的样本公共表示相似性更接近于语义相似性。通过在NUS-WIDE、MIRFlickr-25K和MS-COCO三个数据集上的实验可以发现,由于引入了多标签语义相关性,DSCGCN可以获得令人满意的检索效果。 展开更多
关键词 语义相关性 自适应相关性矩阵 图卷积网络 跨模态检索
下载PDF
基于可变形三维图卷积的轻量级点云分类研究
11
作者 蔡俊民 梁正友 +1 位作者 孙宇 陈子奥 《计算机工程》 CAS CSCD 北大核心 2024年第9期255-265,共11页
现有深度学习方法在处理点云分类任务时,依赖于点的绝对坐标,存在模型复杂度较大的问题。对此,提出一种轻量级的点云分类网络DMGCN-3D。使用自适应空洞K近邻(KNN)算法构造图结构,尽可能捕捉局部更广泛空间的几何结构信息,并减少计算开支... 现有深度学习方法在处理点云分类任务时,依赖于点的绝对坐标,存在模型复杂度较大的问题。对此,提出一种轻量级的点云分类网络DMGCN-3D。使用自适应空洞K近邻(KNN)算法构造图结构,尽可能捕捉局部更广泛空间的几何结构信息,并减少计算开支;构造可变形三维图卷积,引入可学习的点与点之间的方向向量来获取相对特性,在特征提取过程中保证点云的置换不变性与尺度不变性;构建多头自注意力模块,通过残差结构将分组变换注意力(GSA)与多层感知机(MLP)相结合,MLP有助于保持原始点云信息的完整性,GSA使得网络能够学习特征内部的自相关性,在提高特征表达能力的同时降低参数总量;使用空间变换网络结合MLP来学习点云特征;对所提取的特征进行融合以得到更综合的特征,将其用于点云分类。实验结果表明,DMGCN-3D在ModelNet10、ModelNet40、ScanObjectNN数据集上的总体精度分别达到96.5%、94.7%、81.9%,比DGCNN分别提高2.9、2.1、3.8个百分点,参数总量相比DGCNN、LDGCNN、3DGCN模型分别降低52.9%、23.9%、3.3%,且DMGCN-3D能够保持较高的鲁棒性。 展开更多
关键词 点云分类 可变形三维图卷积 自适应 多头自注意力 轻量级网络
下载PDF
无气象信息条件下基于AGCRN的分布式光伏出力超短期预测方法 被引量:4
12
作者 赵洪山 孙承妍 +1 位作者 温开云 吴雨晨 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期65-73,I0002,共10页
针对分布式光伏普遍缺少气象量测装置而导致功率预测精度不足的问题,提出了一种基于自适应图卷积循环网络的分布式光伏出力超短期预测方法,可以在无气象数据的条件下,仅基于历史出力数据实现光伏出力精准预测。首先,分析了光伏出力数据... 针对分布式光伏普遍缺少气象量测装置而导致功率预测精度不足的问题,提出了一种基于自适应图卷积循环网络的分布式光伏出力超短期预测方法,可以在无气象数据的条件下,仅基于历史出力数据实现光伏出力精准预测。首先,分析了光伏出力数据兼具时序性和空间相关性,利用门控循环网络提取时序特征,利用自适应图卷积网络挖掘传统图卷积网络无法捕捉的光伏出力潜在空间相关性。然后,融合门控循环单元和自适应图卷积网络,构建自适应图卷积循环网络以提取多光伏站点出力的时空相关性,并利用注意力机制为不同时刻的时空特征分配权重。最后,通过全连接层输出最终的预测结果。采用某地区屋顶光伏实际出力数据在不同预测时间尺度下比较所提方法与其他方法的预测性能,结果表明,在没有气象数据的情况下,当预测尺度为15、30、60 min时,相比于传统门控循环网络,所提方法的平均绝对误差分别减少了16.9%、19.8%和30.5%。 展开更多
关键词 分布式光伏 超短期预测 时空相关性 无气象信息 自适应图卷积 门控循环单元
下载PDF
基于3D骨架相似性的自适应移位图卷积神经网络人体行为识别算法 被引量:2
13
作者 闫文杰 尹艺颖 《计算机科学》 CSCD 北大核心 2024年第4期236-242,共7页
图卷积神经网络(Graph Convolutional Neural network,GCN)在基于3D骨架的人体行为识别领域取得了良好效果。然而,现有的大多数GCN方法对行为动作图的构建都是基于人体物理结构的手动设置,训练阶段各个图节点只能根据手动设置建立联系,... 图卷积神经网络(Graph Convolutional Neural network,GCN)在基于3D骨架的人体行为识别领域取得了良好效果。然而,现有的大多数GCN方法对行为动作图的构建都是基于人体物理结构的手动设置,训练阶段各个图节点只能根据手动设置建立联系,无法感知动作行为过程中骨骼节点之间产生的新联系,导致图拓扑结构不合理和不灵活。移位图卷积网络通过改变图网络结构使得感受野更加灵活,并且在全局移位角度取得了良好效果。因此,提出了一种基于自适应移位图卷积神经网络(Adaptive Shift Graph Convolutional Neural network,AS-GCN)的人体行为识别算法来弥补前述GCN方法的不足。AS-GCN借鉴了移位图卷积网络的思想,提出用每个人体动作的本身特点来指导图神经网络进行移位操作,以尽可能准确地选定需要扩大感受野的节点。在基于骨架的通用动作识别数据集NTU-RGBD上,所提算法在骨骼有无物理关系约束的前提条件下均进行了实验验证。与现有的先进算法相比,AS-GCN算法的动作识别准确率在有骨骼物理约束的条件下的CV和CS角度上平均提高了12%和4.84%;在无骨骼物理约束的条件下的CV和CS角度上平均提高了20%和14.49%。 展开更多
关键词 骨架动作分类 图卷积神经网络 行为识别 自适应移位
下载PDF
基于多尺度时空优化的空气质量预测方法
14
作者 董梅 张贤坤 +2 位作者 黄文杰 秦锋斌 宋琛 《天津科技大学学报》 CAS 2024年第2期71-80,共10页
本文提出一种基于多尺度时空优化的空气质量预测方法(multi-scale spatial-temporal network for air quality prediction,MSSTN-AQP),结合空气质量系统中存在的长短期时间依赖关系和动态空间依赖性,提高长期空气质量预测的准确性。首先... 本文提出一种基于多尺度时空优化的空气质量预测方法(multi-scale spatial-temporal network for air quality prediction,MSSTN-AQP),结合空气质量系统中存在的长短期时间依赖关系和动态空间依赖性,提高长期空气质量预测的准确性。首先,通过构建多尺度时空特征提取模块,从多源异构数据中提取时空特征。其次,构建动态空间特征提取模块。通过将图卷积网络与注意力机制进行有效结合,捕捉空气质量网络中的全局空间特征,用于对多种空间依赖关系的联合建模。最后,构建时间特征提取模块,对Transformer模型进行改进与优化。自适应时间Transformer模块主要用于模拟跨多个时间步长的双向时间依赖关系。此外,将上述时空特征提取模块进行有效集成化,构建端到端的空气质量预测模型。为了验证模型的有效性,在两个真实数据集中进行实验验证。实验结果表明,MSSTN-AQP在预测精度上更具优势,尤其是在长期的空气质量预测任务中优势更加明显。 展开更多
关键词 空气质量预测 多尺度时空特征提取 图卷积网络 自适应时间Transformer
下载PDF
基于双路先验自适应图神经常微分方程的交通流预测
15
作者 袁蓉 彭莉兰 +1 位作者 李天瑞 李崇寿 《计算机科学》 CSCD 北大核心 2024年第4期151-157,共7页
准确的交通流量预测是智能交通系统不可或缺的组成部分。近年来,图神经网络在交通流预测任务中取得了较好的预测结果。然而,图神经网络的信息传递是不连续的潜在状态传播,且随着网络层数的增加存在过平滑的问题,这限制了模型捕获远距离... 准确的交通流量预测是智能交通系统不可或缺的组成部分。近年来,图神经网络在交通流预测任务中取得了较好的预测结果。然而,图神经网络的信息传递是不连续的潜在状态传播,且随着网络层数的增加存在过平滑的问题,这限制了模型捕获远距离节点的空间依赖关系的能力。同时,在表示道路网络的空间关系时,现有方法大多仅使用先验知识构建的预定义图或仅使用路网状况构建的自适应图,忽略了两类图结合的方式。针对上述问题,提出了一种基于双路先验自适应图神经常微分方程的交通流预测模型。利用时间卷积网络捕获序列的时间相关性,使用先验自适应图融合模块表示道路网络的空间关系,并通过基于张量乘法的神经常微分方程以连续的方式传播复杂的时空特征。最后,在美国加利福尼亚州4个公开的高速公路流量数据集上进行对比实验,结果表明所提模型的预测效果优于现有的10种对比方法。 展开更多
关键词 交通预测 先验自适应图 图卷积神经网络 神经常微分方程 张量乘法
下载PDF
结合动态自适应调制和结构关系学习的细粒度图像分类
16
作者 王衍根 陈飞 陈权 《计算机系统应用》 2024年第8期166-175,共10页
由于细粒度图像类间差异小,类内差异大的特点,因此细粒度图像分类任务关键在于寻找类别间细微差异.最近,基于Vision Transformer的网络大多侧重挖掘图像最显著判别区域特征.这存在两个问题:首先,网络忽略从其他判别区域挖掘分类线索,容... 由于细粒度图像类间差异小,类内差异大的特点,因此细粒度图像分类任务关键在于寻找类别间细微差异.最近,基于Vision Transformer的网络大多侧重挖掘图像最显著判别区域特征.这存在两个问题:首先,网络忽略从其他判别区域挖掘分类线索,容易混淆相似类别;其次,忽略了图像的结构关系,导致提取的类别特征不准确.为解决上述问题,本文提出动态自适应调制和结构关系学习两个模块,通过动态自适应调制模块迫使网络寻找多个判别区域,再利用结构关系学习模块构建判别区域间结构关系;最后利用图卷积网络融合语义信息和结构信息得出预测分类结果.所提出的方法在CUB-200-2011数据集和NA-Birds数据集上测试准确率分别达到92.9%和93.0%,优于现有最先进网络. 展开更多
关键词 细粒度图像分类 Vision Transformer(ViT) 动态自适应调制 结构关系学习 图卷积网络
下载PDF
基于GCN-LSTM融合模型的自适应智能路由算法 被引量:1
17
作者 李温静 诸金洪 +3 位作者 刘柱 王思宁 张楠 郭文静 《信息技术》 2024年第4期93-99,共7页
海量的电力终端设备接入使得现有路由算法难以满足业务需求,因此,文中提出一种基于图卷积神经网络(Graph Convolutional Network,GCN)和长短期记忆网络(Long Short-Term Memory,LSTM)的自适应智能路由算法。首先,通过GCN-LSTM提取链路... 海量的电力终端设备接入使得现有路由算法难以满足业务需求,因此,文中提出一种基于图卷积神经网络(Graph Convolutional Network,GCN)和长短期记忆网络(Long Short-Term Memory,LSTM)的自适应智能路由算法。首先,通过GCN-LSTM提取链路的状态特征和网络流量的时空特征,对链路的平均时延进行预测;其次,通过全连接层建立预测结果与最优路径的映射关系;最后,通过深度强化学习(Deep Reinforcement Learning,DRL)框架来训练融合模型。实验结果表明,文中所提算法能够自适应动态的网络变化,相比于常用的智能路由算法,具有更低的平均时延和较强的泛化性。 展开更多
关键词 智能路由算法 图卷积神经网络 深度强化学习 长短期记忆网络 自适应
下载PDF
基于自适应平衡静动态联合网络的公交客流预测
18
作者 黄来安 朱杭雄 栗波 《计算机应用研究》 CSCD 北大核心 2024年第8期2360-2365,共6页
为解决现有公交客流预测方法多数利用预定义的图结构进行空间建模,对交通状况变化所引起客流波动考虑不充分,无法捕捉短时动态的空间依赖关系问题,提出一种自适应平衡静动态联合网络(ASDNet)模型。首先,利用时间卷积网络捕获序列的时间... 为解决现有公交客流预测方法多数利用预定义的图结构进行空间建模,对交通状况变化所引起客流波动考虑不充分,无法捕捉短时动态的空间依赖关系问题,提出一种自适应平衡静动态联合网络(ASDNet)模型。首先,利用时间卷积网络捕获序列的时间相关性;其次,利用图卷积捕捉站点之间整体空间信息,采用动态图同构网络捕捉相邻时隙动态图之间隐藏的动态依赖关系;最后,通过自适应平衡机制自适应地调节静动态联合网络之间的信息传递。在广州市真实公交数据集上进行了实验,结果表明,与多个基准模型相比,该模型在MAE、RMSE和MAPE预测误差指标上平均降低了12.2%、9.9%和15%,R2精确度指标上平均提高了6.3%。表明该模型能够有效地捕捉客流数据的时空变化规律,可为公交运营管理提供技术参考。 展开更多
关键词 公交客流预测 时间卷积网络 图卷积 动态图同构网络 自适应平衡静动态联合网络 时空变化
下载PDF
域自适应动态图卷积网络下的地铁客流预测
19
作者 程子涵 张阳 辛东嵘 《交通科技与经济》 2024年第3期28-35,共8页
针对客流预测中存在因数据量有限导致模型训练过程中出现高方差和泛化性差等问题,提出一种域自适应动态图卷积网络(GCN-DANN)。通过构建地铁线路的节点网络拓扑结构,并利用动态图卷积网络提取相邻站点之间的流量、站点所属线路的交通负... 针对客流预测中存在因数据量有限导致模型训练过程中出现高方差和泛化性差等问题,提出一种域自适应动态图卷积网络(GCN-DANN)。通过构建地铁线路的节点网络拓扑结构,并利用动态图卷积网络提取相邻站点之间的流量、站点所属线路的交通负载以及不同线路之间的流量传播等关联特征。同时采用迁移学习自适应对齐源域和目标域的特征,减少因数据分布不一致而导致预测性能低等现象。最后,通过全连接层将源域和目标域中的特征进行信息融合,进而弥补训练过程出现高方差和泛化性差等缺陷。在深圳地铁数据集上对模型训练,分别在杭州地铁全样本和20%样本数据集上进行测试和验证。实验结果表明,在20%样本数据集下,GCN-DANN网络与经典预测网络相比,MAE、RMSER和MAPE分别平均下降5.34%、6.07%、2.97%。在全样本数据集下,GCN-DANN在20%样本基础上的三项指标分别下降2.76%、1.77%、3.5%,相较于其他经典网络下降幅度最小。研究可解决实际应用中因数据稀缺导致预测效果差的问题。 展开更多
关键词 智能交通 客流预测 域自适应 图卷积网络 稀缺样本
下载PDF
共享单车需求量的自适应时空图卷积网络预测
20
作者 罗兆杰 《长江信息通信》 2024年第9期36-39,共4页
为解决共享单车分布不平衡问题,基于纽约市Citi Bike共享单车数据,构建无先验道路空间信息的自适应时空图卷积网络(AG-TCNBiLSTM)用于共享单车需求量预测。模型首先构建连通图和交互图表达长期依赖关系,通过多头图注意力网络挖掘短期依... 为解决共享单车分布不平衡问题,基于纽约市Citi Bike共享单车数据,构建无先验道路空间信息的自适应时空图卷积网络(AG-TCNBiLSTM)用于共享单车需求量预测。模型首先构建连通图和交互图表达长期依赖关系,通过多头图注意力网络挖掘短期依赖关系,融合长短期依赖图得到最优图结构;其次,整合ChebNet、TCN和Bi-LSTM捕捉时空依赖性。利用共享单车数据集对需求量的预测结果表明,AG-TCNBiLSTM相较于其它基线模型,预测效果最佳,验证了其在捕捉交通网络动态变化的有效性。 展开更多
关键词 共享单车 需求量预测 图注意力网络 自适应时空图卷积
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部