Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to ver...Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.展开更多
The temperature dependent magnetization of the (Ce,Nd) 2(Fe,Si,Mn) 17 intermetallic compounds were measured and analyzed by molecular field theory (MFT). The relationship between T C and the intrasublattic...The temperature dependent magnetization of the (Ce,Nd) 2(Fe,Si,Mn) 17 intermetallic compounds were measured and analyzed by molecular field theory (MFT). The relationship between T C and the intrasublattice coupling interactions was discussed. The two sublattice MFT model can well describe the temperature dependence of the magnetization for all the compounds investigated. Ce ion in (Ce,Nd) 2Fe 17 compounds does not simply dilute the magnetic structure, but is likely present in a mixed valence state. The substitution of Si for Fe strongly raises T C and the mean Fe moment remains unchanged for Ce 2(Si,Fe) 17 compounds, and the 3d exchange coupling constant J FF increases linearly. Mn decreases T C of Nd 2(Mn, Fe) 17 compound by reducing J FF .展开更多
We optimized the ground-state stable configuration of CoS molecule in different external radiation fields(0-0.04 atomic units(a.u.))at the basis set level of 6-311G++(d,p)using the B3LYP density functional theory.On t...We optimized the ground-state stable configuration of CoS molecule in different external radiation fields(0-0.04 atomic units(a.u.))at the basis set level of 6-311G++(d,p)using the B3LYP density functional theory.On this basis,the molecular structure,total energy,energy gap,and the intensities of infrared ray(IR)spectra,Raman spectra,and ultraviolet-visible(UV-Vis)absorption spectra of CoS molecule were computed using the same method.The results showed that the molecular structure changed greatly under the effect of the external radiation fields and had significant dependency on the radiation fields.The total energy of CoS molecule grew slightly at first and then significantly decreased in a monotonous manner.The bond length,dipole moment,and energy gap of the molecule all reduced at first and then increased,with the turning point all at F=0.025 a.u.of the radiation field.The absorption peak of IR spectra and Raman optical activity both had maximums at F=0.03 a.u.with significant red shift.In the external radiation field of F=0.030 a.u.,the absorption wavelength of the UV-Vis absorption spectra showed large blue shift,and a strong absorption peak was observed.展开更多
Carbon nanotubes (CNTs) have long been expected to be excellent nanochannels for use in desalination membranes and other bio-inspired human-made channels owing to their experimentally confirmed ultrafast water flow ...Carbon nanotubes (CNTs) have long been expected to be excellent nanochannels for use in desalination membranes and other bio-inspired human-made channels owing to their experimentally confirmed ultrafast water flow and theoretically predicted ion rejection. The correct classical force field potential for the interactions between cations and CNTs plays a cru- cial role in understanding the transport behaviors of ions near and inside the CNT, which is key to these expectations. Here, using density functional theory calculations, we provide classical force field potentials for the interactions of Na+/hydrated Na+ with (7,7), (8,8), (9,9), and (10,10)-type CNTs. These potentials can be directly used in current popular classical soft- ware such as nanoscale molecular dynamics (NAMD) by employing the tclBC interface. By incorporating the potential of hydrated cation-g interactions to classical all-atom force fields, we show that the ions will move inside the CNT and accu- mulate, which will block the water flow in wide CNTs. This blockage of water flow in wide CNTs is consistent with recent experimental observations. These results will be helpful for the understanding and design of desalination membranes, new types of nanofluidic channels, nanosensors, and nanoreactors based on CNT platforms.展开更多
Phosgene is highly toxic, and it plays a role in the depletion of the ozone layer. The ground state geometric structure and spectral characteristic of phosgene in various external electric fields were calculated via t...Phosgene is highly toxic, and it plays a role in the depletion of the ozone layer. The ground state geometric structure and spectral characteristic of phosgene in various external electric fields were calculated via the density-functional theory (DFT) and time-dependent density-functional theory (TDDFT) with the B3LYP/6-31+G(d) basis set. With external electric field, the structure of phosgene changed significantly. With increasing electric field, the bond lengths of 1C-3Cl and 1C-4Cl increased;the total energy and energy gap initially increased and then decreased, whereas the dipole moment initially decreased and then increased. Most of the IR vibrational frequencies were redshifted. The wavelength of the singlet excited state increased, reflecting a red shift, and the oscillator strengths of most transitions belonged to forbidden transitions. These results are of great significance for studying the dissociation of phosgene in external electric field.展开更多
The molecular field theory (MF) of nematic to isotropic (N-I) phase transition in surface-aligned nematic film is proposed by using Lebwohl-Lasher model. The calculated results indicate that the N-I-phase transition w...The molecular field theory (MF) of nematic to isotropic (N-I) phase transition in surface-aligned nematic film is proposed by using Lebwohl-Lasher model. The calculated results indicate that the N-I-phase transition will be strongly affected by the interaction between liquid crystal molecules and substrate. The nematic film can be divided into three regions according to their phase transition behavior: the interface, the bulk and the free surface. The interface phase transition depends strongly on the strength of interaction between liquid crystal and substrate, and its phase transition temperature is higher than that of bulk phase transition. Especially, the order parameter will become a continuous function of temperature when the anchoring energy is strong enough. In the bulkregion, the N-I phase transition is still of the first order while in the free surface, the N-I phase transition belongs to the typical second order transition behaviour. When the temperature is increased, the N-I phase transition starts in the free surface region and then extends to the bulk and interface regions gradually. All these results are confirmed by Monte Carlo (MC) study and agree with the Landau-de Gennes theory.展开更多
基金Project supported by the Open Project of the Key Laboratory of Xinjiang Uygur Autonomous Region,China(Grant No.2021D04015)the Yili Kazakh Autonomous Prefecture Science and Technology Program Project,China(Grant No.YZ2022B021).
文摘Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.
文摘The temperature dependent magnetization of the (Ce,Nd) 2(Fe,Si,Mn) 17 intermetallic compounds were measured and analyzed by molecular field theory (MFT). The relationship between T C and the intrasublattice coupling interactions was discussed. The two sublattice MFT model can well describe the temperature dependence of the magnetization for all the compounds investigated. Ce ion in (Ce,Nd) 2Fe 17 compounds does not simply dilute the magnetic structure, but is likely present in a mixed valence state. The substitution of Si for Fe strongly raises T C and the mean Fe moment remains unchanged for Ce 2(Si,Fe) 17 compounds, and the 3d exchange coupling constant J FF increases linearly. Mn decreases T C of Nd 2(Mn, Fe) 17 compound by reducing J FF .
基金The authors are pleased to acknowledge the financial support of this research by the National Natural Science Foundation of China(Grant No.21667010)support from this startup project for high-level talents of Guizhou Institute of Technology(XJGC20150404).
文摘We optimized the ground-state stable configuration of CoS molecule in different external radiation fields(0-0.04 atomic units(a.u.))at the basis set level of 6-311G++(d,p)using the B3LYP density functional theory.On this basis,the molecular structure,total energy,energy gap,and the intensities of infrared ray(IR)spectra,Raman spectra,and ultraviolet-visible(UV-Vis)absorption spectra of CoS molecule were computed using the same method.The results showed that the molecular structure changed greatly under the effect of the external radiation fields and had significant dependency on the radiation fields.The total energy of CoS molecule grew slightly at first and then significantly decreased in a monotonous manner.The bond length,dipole moment,and energy gap of the molecule all reduced at first and then increased,with the turning point all at F=0.025 a.u.of the radiation field.The absorption peak of IR spectra and Raman optical activity both had maximums at F=0.03 a.u.with significant red shift.In the external radiation field of F=0.030 a.u.,the absorption wavelength of the UV-Vis absorption spectra showed large blue shift,and a strong absorption peak was observed.
基金Project supported by the National Science Fund for Outstanding Young Scholars of China(Grant No.11722548)the National Natural Science Foundation of China(Grant Nos.11574339 and 11404361)
文摘Carbon nanotubes (CNTs) have long been expected to be excellent nanochannels for use in desalination membranes and other bio-inspired human-made channels owing to their experimentally confirmed ultrafast water flow and theoretically predicted ion rejection. The correct classical force field potential for the interactions between cations and CNTs plays a cru- cial role in understanding the transport behaviors of ions near and inside the CNT, which is key to these expectations. Here, using density functional theory calculations, we provide classical force field potentials for the interactions of Na+/hydrated Na+ with (7,7), (8,8), (9,9), and (10,10)-type CNTs. These potentials can be directly used in current popular classical soft- ware such as nanoscale molecular dynamics (NAMD) by employing the tclBC interface. By incorporating the potential of hydrated cation-g interactions to classical all-atom force fields, we show that the ions will move inside the CNT and accu- mulate, which will block the water flow in wide CNTs. This blockage of water flow in wide CNTs is consistent with recent experimental observations. These results will be helpful for the understanding and design of desalination membranes, new types of nanofluidic channels, nanosensors, and nanoreactors based on CNT platforms.
基金National Natural Science Foundation of China(Grant Number:21763027)Innovation Team for Monitoring of Emerging Contaminants and Biomarkers(Grant Number:2021D14017)+2 种基金Xinjiang Regional Collaborative Innovation Project(Grant Number:2019E0223)Scientific Research Program of Colleges and Universities in Xinjiang(Grant Number:XJEDU2020Y029)“13th Five-Year”Plan for Key Discipline Physics Bidding Project of Xinjiang Normal University(Grant Number:17SDKD0602).
文摘Phosgene is highly toxic, and it plays a role in the depletion of the ozone layer. The ground state geometric structure and spectral characteristic of phosgene in various external electric fields were calculated via the density-functional theory (DFT) and time-dependent density-functional theory (TDDFT) with the B3LYP/6-31+G(d) basis set. With external electric field, the structure of phosgene changed significantly. With increasing electric field, the bond lengths of 1C-3Cl and 1C-4Cl increased;the total energy and energy gap initially increased and then decreased, whereas the dipole moment initially decreased and then increased. Most of the IR vibrational frequencies were redshifted. The wavelength of the singlet excited state increased, reflecting a red shift, and the oscillator strengths of most transitions belonged to forbidden transitions. These results are of great significance for studying the dissociation of phosgene in external electric field.
基金Project supported by the National Natural Science Foundation of China, Fok Ying Tung Education Foundation and the State Education Commission of China.
文摘The molecular field theory (MF) of nematic to isotropic (N-I) phase transition in surface-aligned nematic film is proposed by using Lebwohl-Lasher model. The calculated results indicate that the N-I-phase transition will be strongly affected by the interaction between liquid crystal molecules and substrate. The nematic film can be divided into three regions according to their phase transition behavior: the interface, the bulk and the free surface. The interface phase transition depends strongly on the strength of interaction between liquid crystal and substrate, and its phase transition temperature is higher than that of bulk phase transition. Especially, the order parameter will become a continuous function of temperature when the anchoring energy is strong enough. In the bulkregion, the N-I phase transition is still of the first order while in the free surface, the N-I phase transition belongs to the typical second order transition behaviour. When the temperature is increased, the N-I phase transition starts in the free surface region and then extends to the bulk and interface regions gradually. All these results are confirmed by Monte Carlo (MC) study and agree with the Landau-de Gennes theory.