In this paper the system performance of an MC-CDMA (multi-carrier coded-division multiple-access) system operating over single-cell with two-tier femtocell environment is analyzed. Consider two-tier scenario is deploy...In this paper the system performance of an MC-CDMA (multi-carrier coded-division multiple-access) system operating over single-cell with two-tier femtocell environment is analyzed. Consider two-tier scenario is deployed with a macrocell site in which is being surrounded several femtocells, which are designed to serve a group of subscribers locate in a small coverage area such as small office, home office or a house. The coverage area is typically up to 100 meters in radius. Mostly, the femtocell is applied to serve indoor subscribers, thus, the Rayleigh fading is adopted to characterize the propagation channel. The technique of TH-MC- CDMA (time-hopped multi-carrier coded-division multiple-access) technique is supposed to transmit each symbol alternatively with fair time (slotting)/frequency (coding) for each user in the hotspots (the area around 0th femtocell). The intensity of signals estimated at a mobile unit located in the second tie, i.e., the femtocell coverage area, is an important issue. The contribution of the paper is mainly to evaluate the system performance with both the BER (bit error rate) and OP (outage probability) according to the most important parameters, for example, the activating user number, the hopping number provided by TH-MC-CDMA system and the subcarrier number. Furthermore, the discussion of interference avoidance is also discussed with non-analytically.展开更多
In the two-tier femtocell network, a central macroceU is underlaid with a large number of shorter range femtocell hotspots, which is preferably in the universal frequency reuse mode. This kind of new network architect...In the two-tier femtocell network, a central macroceU is underlaid with a large number of shorter range femtocell hotspots, which is preferably in the universal frequency reuse mode. This kind of new network architecture brings about urgent challenges to the schemes of interference management and the radio resource allocation. Motivated by these challenges, three contributions are made in this paper: 1) A novel joint subchannel and power allocation problem for orthogonal frequency division multiple access (OFDMA) downlink based femtocells is formulated on the premise of minimizing radiated interference of every Femto base station. 2) The pseudo-handover based scheduling information exchange method is proposed to exchange the co-tier and cross-tier information, and thus avoid the collision interference. 3) An iterative scheme of power control and subchannel is proposed to solve the formulated problem in contribution 1), which is an NP-complete problem. Through simulations and comparisons with four other schemes, better performance in reducing interference and improving the spectrum efficiency is achieved by the proposed scheme.展开更多
在Femtocell家庭基站(Femtocell Base Station,FBS)组成的异构网络中,为提升网络的频谱效率,FBS与Macrocell宏基站(Macrocell Base Station,MBS)一般要求是同频部署,然而同频部署会产生同信道干扰。为了实现FBS的大规模部署,降低网络同...在Femtocell家庭基站(Femtocell Base Station,FBS)组成的异构网络中,为提升网络的频谱效率,FBS与Macrocell宏基站(Macrocell Base Station,MBS)一般要求是同频部署,然而同频部署会产生同信道干扰。为了实现FBS的大规模部署,降低网络同信道干扰影响变得尤为重要。该文提出一种基于Q-learning的子信道分配方案,既保证大量部署的FBS不会对MBS带来过高的跨层干扰,同时也降低了FBS之间的同层干扰。同时针对FBS稀疏部署和密集部署的场景,分别进行了算法的仿真验证,其仿真结果表明该算法降低了干扰,验证了理论的正确性。展开更多
文摘In this paper the system performance of an MC-CDMA (multi-carrier coded-division multiple-access) system operating over single-cell with two-tier femtocell environment is analyzed. Consider two-tier scenario is deployed with a macrocell site in which is being surrounded several femtocells, which are designed to serve a group of subscribers locate in a small coverage area such as small office, home office or a house. The coverage area is typically up to 100 meters in radius. Mostly, the femtocell is applied to serve indoor subscribers, thus, the Rayleigh fading is adopted to characterize the propagation channel. The technique of TH-MC- CDMA (time-hopped multi-carrier coded-division multiple-access) technique is supposed to transmit each symbol alternatively with fair time (slotting)/frequency (coding) for each user in the hotspots (the area around 0th femtocell). The intensity of signals estimated at a mobile unit located in the second tie, i.e., the femtocell coverage area, is an important issue. The contribution of the paper is mainly to evaluate the system performance with both the BER (bit error rate) and OP (outage probability) according to the most important parameters, for example, the activating user number, the hopping number provided by TH-MC-CDMA system and the subcarrier number. Furthermore, the discussion of interference avoidance is also discussed with non-analytically.
基金supported by International Cooperation and Exchanges Project (2010DFA11060)the National Natural Science Foundation of China (60872048)
文摘In the two-tier femtocell network, a central macroceU is underlaid with a large number of shorter range femtocell hotspots, which is preferably in the universal frequency reuse mode. This kind of new network architecture brings about urgent challenges to the schemes of interference management and the radio resource allocation. Motivated by these challenges, three contributions are made in this paper: 1) A novel joint subchannel and power allocation problem for orthogonal frequency division multiple access (OFDMA) downlink based femtocells is formulated on the premise of minimizing radiated interference of every Femto base station. 2) The pseudo-handover based scheduling information exchange method is proposed to exchange the co-tier and cross-tier information, and thus avoid the collision interference. 3) An iterative scheme of power control and subchannel is proposed to solve the formulated problem in contribution 1), which is an NP-complete problem. Through simulations and comparisons with four other schemes, better performance in reducing interference and improving the spectrum efficiency is achieved by the proposed scheme.
文摘在Femtocell家庭基站(Femtocell Base Station,FBS)组成的异构网络中,为提升网络的频谱效率,FBS与Macrocell宏基站(Macrocell Base Station,MBS)一般要求是同频部署,然而同频部署会产生同信道干扰。为了实现FBS的大规模部署,降低网络同信道干扰影响变得尤为重要。该文提出一种基于Q-learning的子信道分配方案,既保证大量部署的FBS不会对MBS带来过高的跨层干扰,同时也降低了FBS之间的同层干扰。同时针对FBS稀疏部署和密集部署的场景,分别进行了算法的仿真验证,其仿真结果表明该算法降低了干扰,验证了理论的正确性。