Wireless sensor networks (WSNs) are vulnerable to security attacks due to their deployment and resource constraints.Considering that most large-scale WSNs follow a two-tiered architecture,we propose an efficient and d...Wireless sensor networks (WSNs) are vulnerable to security attacks due to their deployment and resource constraints.Considering that most large-scale WSNs follow a two-tiered architecture,we propose an efficient and denial-of-service (DoS)-resistant user authentication scheme for two-tiered WSNs.The proposed approach reduces the computational load,since it performs only simple operations,such as exclusive-OR and a one-way hash function.This feature is more suitable for the resource-limited sensor nodes and mobile devices.And it is unnecessary for master nodes to forward login request messages to the base station,or maintain a long user list.In addition,pseudonym identity is introduced to preserve user anonymity.Through clever design,our proposed scheme can prevent smart card breaches.Finally,security and performance analysis demonstrates the effectiveness and robustness of the proposed scheme.展开更多
文摘Wireless sensor networks (WSNs) are vulnerable to security attacks due to their deployment and resource constraints.Considering that most large-scale WSNs follow a two-tiered architecture,we propose an efficient and denial-of-service (DoS)-resistant user authentication scheme for two-tiered WSNs.The proposed approach reduces the computational load,since it performs only simple operations,such as exclusive-OR and a one-way hash function.This feature is more suitable for the resource-limited sensor nodes and mobile devices.And it is unnecessary for master nodes to forward login request messages to the base station,or maintain a long user list.In addition,pseudonym identity is introduced to preserve user anonymity.Through clever design,our proposed scheme can prevent smart card breaches.Finally,security and performance analysis demonstrates the effectiveness and robustness of the proposed scheme.