To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power ...To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis.展开更多
The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi...The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.展开更多
A power management unit (PMU) chip supplying dual panel supply voltage, which has a low electro-magnetic interference (EMI) characteristic and is favorable for miniaturization, is designed. A two-phase charge pump...A power management unit (PMU) chip supplying dual panel supply voltage, which has a low electro-magnetic interference (EMI) characteristic and is favorable for miniaturization, is designed. A two-phase charge pump circuit using external pumping capacitor increases its pumping current and works out the charge-loss problem by using bulk-potential biasing circuit. A low-power start-up circuit is also proposed to reduce the power consumption of the band-gap reference voltage generator. And the ring oscillator used in the ELVSS power circuit is designed with logic devices by supplying the logic power supply to reduce the layout area. The PMU chip is designed with MagnaChip's 0.25 μ high-voltage process. The driving currents of ELVDD and ELVSS are more than 50 mA when a SPICE simulation is done.展开更多
This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an S...This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.展开更多
Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considerin...Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.展开更多
A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary u...A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary users (SUs) communicate with each other via an assist relay. The main point is to provide the best system performance to SUs while maintaining the interference power at primary user (PU) under a certain level. Using convex optimization, a closed-form solution is obtained when optimizing the power allocation among the two nodes and relay. Based on this result, a joint power control and relay selection scheme with fewer variable dimensions is proposed to maximize the achievable rate of the secondary system. Simulation results demonstrate that the sum rate of the cognitive two-way relay network increases compared with a random relay selection and fixed power allocation.展开更多
A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tes...A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.展开更多
Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structu...Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.展开更多
This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employ...This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.展开更多
A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance o...A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance on energy conservation and emission reduction. A new auxiliary power unit of solid oxide fuel cell( SOFCAPU) with high efficiency solves this problem perfectly. Heat pump air conditioner is considered as a promising device for the application of SOFC-APU with a high cooling and heating efficiency. To make a quantitative analysis for the application of SOFC-APU,a model is built in Matlab / Simulink. The diesel engine model and SOFC-APU model are fitted based on some experimental data of SOFC-APU and diesel engine during the idling operation. An analysis of the application of SOFC-APU on different trucks in Northeast China is comprehensively made,including efficiency and emission.展开更多
Considering units starting and network constraints and the concept of optimization period,a optimization model which is a typical multi-constraint knapsack problem is established to solve the selection optimization pr...Considering units starting and network constraints and the concept of optimization period,a optimization model which is a typical multi-constraint knapsack problem is established to solve the selection optimization problem of units starting in power system restoration period in this paper, and the objective of the model is to maximize the total power generation capability. A relative effectiveness assessment based on a improving data envelopment analysis is adopted to select the initial units to be started, genetic algorithms are employed to solve the knapsack problem to determine the most reasonable units be started at the current time. Finally, IEEE-39 bus system simulation result proves that the proposed model is feasible and effective.展开更多
To solve the problem of harmonic pollution to the power grid that caused by traditional diode rectifier and phase controlled rectifier, the unit power factor PWM rectifier is designed. The topology structure of the re...To solve the problem of harmonic pollution to the power grid that caused by traditional diode rectifier and phase controlled rectifier, the unit power factor PWM rectifier is designed. The topology structure of the rectifier circuit is introduced and the double closed-loop control strategy in three-phase stationary coordinate system is analyzed. For the deficiency of control strategy, the control strategy in two-phase synchronous rotating coordinate system is proposed. This makes the independent control of active current and reactive current to be realized. The simulation model of the PWM rectifier is built and the effectiveness of the control method proposed in this paper is verified by simulation.展开更多
Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simpli...Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.展开更多
Two-way decode-and-forward(DF) relay technique is an efficient method to improve system performance in 5G networks.However,traditional orthogonal frequency division multiplexing(OFDM) based two-way relay systems only ...Two-way decode-and-forward(DF) relay technique is an efficient method to improve system performance in 5G networks.However,traditional orthogonal frequency division multiplexing(OFDM) based two-way relay systems only consider a per-subcarrier relay strategy,which treats each subcarrier as a separate channel,which results in significant sum rate loss,especially in fading environments.In this paper,a joint coding scheme over multiple subcarriers is involved for multipair users in two-way relay systems to obtain multiuser diversity.A generalized subcarrier pairing strategy is proposed to permit each user-pair to occupy different subcarriers during the two transmission phases,i.e.,the multiple access and broadcast phases.Moreover,a low complexity joint resource allocation scheme is proposed to improve the spectrum efficiency with an additional multi-user diversity gain.Some numerical simulations are finally provided to verify the efficacy of our proposal.展开更多
Considering the economics and securities for the operation of a power system, this paper presents a new adaptive dynamic programming approach for security-constrained unit commitment (SCUC) problems. In response to t...Considering the economics and securities for the operation of a power system, this paper presents a new adaptive dynamic programming approach for security-constrained unit commitment (SCUC) problems. In response to the “curse of dimension” problem of dynamic programming, the approach solves the Bellman’s equation of SCUC approximately by solving a sequence of simplified single stage optimization problems. An extended sequential truncation technique is proposed to explore the state space of the approach, which is superior to traditional sequential truncation in daily cost for unit commitment. Different test cases from 30 to 300 buses over a 24 h horizon are analyzed. Extensive numerical comparisons show that the proposed approach is capable of obtaining the optimal unit commitment schedules without any network and bus voltage violations, and minimizing the operation cost as well.展开更多
Tidal stream power units with horizontal-axis propellers are one of promising technologies for generating the renewable green energy. The ebb and flow require that the power unit must operate in bidirectional tidal st...Tidal stream power units with horizontal-axis propellers are one of promising technologies for generating the renewable green energy. The ebb and flow require that the power unit must operate in bidirectional tidal streams. Hence a tidal stream power unit with counter-rotating type horizontal-axis bidirectional propellers is proposed in this paper. The blades with fully-symmetrical hydrofoils were optimized numerically. The output and flow conditions predicted by the computational fluid dynamics simulations are compared with the results of the wind tunnel experiments at the higher tip speed ratios, which are of expected usual operating conditions of this unit. The numerical and experimental results show good agreements. It is also confirmed that the flow discharged from the counter-rotating type propellers has no swirling component, though the single propeller generates the unacceptable swirling component.展开更多
Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is propos...Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.展开更多
In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the lo...In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.展开更多
Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ...Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.展开更多
The authors have invented a superior wind power unit, which is composed of tandem wind rotors and double rotational armature type generator without the traditional stator. This unit is called "intelligent wind power ...The authors have invented a superior wind power unit, which is composed of tandem wind rotors and double rotational armature type generator without the traditional stator. This unit is called "intelligent wind power unit". At upwind type unit, the large-sized front wind rotor and the small-sized rear wind rotor drive the inner and the outer rotational armatures respectively, in keeping the rotational torque counter-balance between both wind rotors/armatures. This paper discusses the acoustic noise emitted from the tandem wind rotors. As for tandem wind rotors, the tip vortex shedding from the front wind rotor may make a loud acoustic noise if the vortex attacks the rear wind rotor. Intelligent wind power unit, however, has no chance to increase the acoustic noise level by the tip vortex because the diameter of the front wind rotor is reasonably larger than the diameter of the rear wind rotor. The vorticity generated in the boundary layer on the blade can be observed obviously at wake flow and can be evaluated quantitatively at flow conditions measured by a hot-wire anemometer at a wind tunnel. The flow conditions have shown that the radial and axial components of vorticities contribute to emit the acoustic noise.展开更多
基金supported by the State Grid Jiangsu Electric Power Co.,Ltd.Technology Project(J2023035).
文摘To mitigate the impact of wind power volatility on power system scheduling,this paper adopts the wind-storage combined unit to improve the dispatchability of wind energy.And a three-level optimal scheduling and power allocation strategy is proposed for the system containing the wind-storage combined unit.The strategy takes smoothing power output as themain objectives.The first level is the wind-storage joint scheduling,and the second and third levels carry out the unit combination optimization of thermal power and the power allocation of wind power cluster(WPC),respectively,according to the scheduling power of WPC and ESS obtained from the first level.This can ensure the stability,economy and environmental friendliness of the whole power system.Based on the roles of peak shaving-valley filling and fluctuation smoothing of the energy storage system(ESS),this paper decides the charging and discharging intervals of ESS,so that the energy storage and wind power output can be further coordinated.Considering the prediction error and the output uncertainty of wind power,the planned scheduling output of wind farms(WFs)is first optimized on a long timescale,and then the rolling correction optimization of the scheduling output of WFs is carried out on a short timescale.Finally,the effectiveness of the proposed optimal scheduling and power allocation strategy is verified through case analysis.
基金Supported by the National Natural Science Foundation of China(60974119)
文摘The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.
文摘A power management unit (PMU) chip supplying dual panel supply voltage, which has a low electro-magnetic interference (EMI) characteristic and is favorable for miniaturization, is designed. A two-phase charge pump circuit using external pumping capacitor increases its pumping current and works out the charge-loss problem by using bulk-potential biasing circuit. A low-power start-up circuit is also proposed to reduce the power consumption of the band-gap reference voltage generator. And the ring oscillator used in the ELVSS power circuit is designed with logic devices by supplying the logic power supply to reduce the layout area. The PMU chip is designed with MagnaChip's 0.25 μ high-voltage process. The driving currents of ELVDD and ELVSS are more than 50 mA when a SPICE simulation is done.
基金supported by the National Natural Science Foundation of China ( No . 61602034 )the Beijing Natural Science Foundation (No. 4162049)+2 种基金the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No. 2014D03)the Fundamental Research Funds for the Central Universities Beijing Jiaotong University (No. 2016JBM015)the NationalHigh Technology Research and Development Program of China (863 Program) (No. 2015AA015702)
文摘This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.
文摘Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.
基金supported by the National Natural Science Foundation of China (61250005)Jiangxi Postdoctoral Science Foundation(2013KY07)
文摘A joint power control and relay selection scheme is considered for a cooperative and cognitive radio system where a secondary network shares spectrum with the primary network. In the secondary network, two secondary users (SUs) communicate with each other via an assist relay. The main point is to provide the best system performance to SUs while maintaining the interference power at primary user (PU) under a certain level. Using convex optimization, a closed-form solution is obtained when optimizing the power allocation among the two nodes and relay. Based on this result, a joint power control and relay selection scheme with fewer variable dimensions is proposed to maximize the achievable rate of the secondary system. Simulation results demonstrate that the sum rate of the cognitive two-way relay network increases compared with a random relay selection and fixed power allocation.
基金supported by the National High Technology Research and Development Program of China (863 Program,Grant Nos. 2006AA09Z226 and 2012AA091104)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University (Grant No. CHD2011JC151)
文摘A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.
文摘Northern China has rich wind power and photovoltaic renewable resources. Combined Heat and Power (CHP) Units to meet the load demand and limit its peaking capacity in winter, to a certain extent, it results in structural problems of wind-solar power and thermoelectric. To solve these problems, this paper proposes a plurality of units together to ensure supply of heat load on the premise, by building a thermoelectric power peaking considering thermal load unit group dynamic scheduling model, to achieve the potential of different thermoelectric properties peaking units of the excavation. Simulation examples show, if the unit group exists obvious relationship thermoelectric individual differences, the thermal load dynamic scheduling can be more significantly improved overall performance peaking unit group, effectively increase clean energy consumptive.
文摘This paper is concerned with the development of electronic controller for turbine POwer units. In order to increase the reliability of the POwer unit, three control loops working in the hi-backup mode have been employed. This control strategy is able to satisfy the demands of the application of the power unit to the aviation fields.
基金AVL LIST GM BH(A-8020 Graz,Hans-List-Platz 1)for its funding
文摘A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance on energy conservation and emission reduction. A new auxiliary power unit of solid oxide fuel cell( SOFCAPU) with high efficiency solves this problem perfectly. Heat pump air conditioner is considered as a promising device for the application of SOFC-APU with a high cooling and heating efficiency. To make a quantitative analysis for the application of SOFC-APU,a model is built in Matlab / Simulink. The diesel engine model and SOFC-APU model are fitted based on some experimental data of SOFC-APU and diesel engine during the idling operation. An analysis of the application of SOFC-APU on different trucks in Northeast China is comprehensively made,including efficiency and emission.
文摘Considering units starting and network constraints and the concept of optimization period,a optimization model which is a typical multi-constraint knapsack problem is established to solve the selection optimization problem of units starting in power system restoration period in this paper, and the objective of the model is to maximize the total power generation capability. A relative effectiveness assessment based on a improving data envelopment analysis is adopted to select the initial units to be started, genetic algorithms are employed to solve the knapsack problem to determine the most reasonable units be started at the current time. Finally, IEEE-39 bus system simulation result proves that the proposed model is feasible and effective.
文摘To solve the problem of harmonic pollution to the power grid that caused by traditional diode rectifier and phase controlled rectifier, the unit power factor PWM rectifier is designed. The topology structure of the rectifier circuit is introduced and the double closed-loop control strategy in three-phase stationary coordinate system is analyzed. For the deficiency of control strategy, the control strategy in two-phase synchronous rotating coordinate system is proposed. This makes the independent control of active current and reactive current to be realized. The simulation model of the PWM rectifier is built and the effectiveness of the control method proposed in this paper is verified by simulation.
文摘Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61501527)State’s Key Project of Research and Development Plan(No.2016YFE0122900-3)+1 种基金the Fundamental Research Funds for the Central Universities,Basic Research Foundation of Science Technology and Innovation Commission of Shenzhen Municipality(No.JCYJ20150630153033410)SYSU-CMU Shunde International Joint Research Institute and 2016 Major Project of Collaborative Innovation in Guangzhou(Research and Application of Ground Satellite Communicaiton Systems for Space Broadband Information Networks)
文摘Two-way decode-and-forward(DF) relay technique is an efficient method to improve system performance in 5G networks.However,traditional orthogonal frequency division multiplexing(OFDM) based two-way relay systems only consider a per-subcarrier relay strategy,which treats each subcarrier as a separate channel,which results in significant sum rate loss,especially in fading environments.In this paper,a joint coding scheme over multiple subcarriers is involved for multipair users in two-way relay systems to obtain multiuser diversity.A generalized subcarrier pairing strategy is proposed to permit each user-pair to occupy different subcarriers during the two transmission phases,i.e.,the multiple access and broadcast phases.Moreover,a low complexity joint resource allocation scheme is proposed to improve the spectrum efficiency with an additional multi-user diversity gain.Some numerical simulations are finally provided to verify the efficacy of our proposal.
文摘Considering the economics and securities for the operation of a power system, this paper presents a new adaptive dynamic programming approach for security-constrained unit commitment (SCUC) problems. In response to the “curse of dimension” problem of dynamic programming, the approach solves the Bellman’s equation of SCUC approximately by solving a sequence of simplified single stage optimization problems. An extended sequential truncation technique is proposed to explore the state space of the approach, which is superior to traditional sequential truncation in daily cost for unit commitment. Different test cases from 30 to 300 buses over a 24 h horizon are analyzed. Extensive numerical comparisons show that the proposed approach is capable of obtaining the optimal unit commitment schedules without any network and bus voltage violations, and minimizing the operation cost as well.
文摘Tidal stream power units with horizontal-axis propellers are one of promising technologies for generating the renewable green energy. The ebb and flow require that the power unit must operate in bidirectional tidal streams. Hence a tidal stream power unit with counter-rotating type horizontal-axis bidirectional propellers is proposed in this paper. The blades with fully-symmetrical hydrofoils were optimized numerically. The output and flow conditions predicted by the computational fluid dynamics simulations are compared with the results of the wind tunnel experiments at the higher tip speed ratios, which are of expected usual operating conditions of this unit. The numerical and experimental results show good agreements. It is also confirmed that the flow discharged from the counter-rotating type propellers has no swirling component, though the single propeller generates the unacceptable swirling component.
文摘Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.
文摘In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction of the rock mass, are discussed. The measurements have been taken in the longwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs F m, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs F st,p . Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a longwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advantageous influence on their life. Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit during blasting. The majority of recorded force changes in the legs has been caused by a dynamic interaction of the roof. They are characterized by a load increase coefficient K d, satisfying the inequality 1 06<K d =F m /F st,p <1 24. A much smaller number of cases, when the external load acted on the bases, was recorded. Individual, recorded results of measurements indicate that changes of the force in the legs, caused by external loads of this type, run more intensively due to roof loads (1 08< K d<1 80),particularly in these cases when the near the roof layer of the seam is under mining. A determination of more precise relations among the changes of forces in the legs, caused by a dynamic interaction of the floor and the bases and the mining and geological conditions requires a performance of additional underground tests.
文摘Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.
文摘The authors have invented a superior wind power unit, which is composed of tandem wind rotors and double rotational armature type generator without the traditional stator. This unit is called "intelligent wind power unit". At upwind type unit, the large-sized front wind rotor and the small-sized rear wind rotor drive the inner and the outer rotational armatures respectively, in keeping the rotational torque counter-balance between both wind rotors/armatures. This paper discusses the acoustic noise emitted from the tandem wind rotors. As for tandem wind rotors, the tip vortex shedding from the front wind rotor may make a loud acoustic noise if the vortex attacks the rear wind rotor. Intelligent wind power unit, however, has no chance to increase the acoustic noise level by the tip vortex because the diameter of the front wind rotor is reasonably larger than the diameter of the rear wind rotor. The vorticity generated in the boundary layer on the blade can be observed obviously at wake flow and can be evaluated quantitatively at flow conditions measured by a hot-wire anemometer at a wind tunnel. The flow conditions have shown that the radial and axial components of vorticities contribute to emit the acoustic noise.