Micro-satellite cluster enables a whole new class of missions for communications, remote sensing, and scientific research for both civilian and military purposes. Synchronizing the time of the satellites in a cluster ...Micro-satellite cluster enables a whole new class of missions for communications, remote sensing, and scientific research for both civilian and military purposes. Synchronizing the time of the satellites in a cluster is important for both cluster sensing capabilities and its autonomous operating. However, the existing time synchronization methods are not suitable for microsatellite cluster, because it requires too many human interventions and occupies too much ground control resource. Although, data post-process may realize the equivalent time synchronization, it requires processing time and powerful computing ability on the ground, which cannot be implemented by cluster itself. In order to autonomously establish and maintain the time benchmark in a cluster, we propose a compact time difference compensation system(TDCS), which is a kind of time control loop that dynamically adjusts the satellite reference frequency according to the time difference. Consequently, the time synchronization in the cluster can be autonomously achieved on-orbit by synchronizing the clock of other satellites to a chosen one's. The experimental result shows that the standard deviation of time synchronization is about 102 ps when the carrier to noise ratio(CNR) is 95 d BHz, and the standard deviation of corresponding frequency difference is approximately0.36 Hz.展开更多
Three functional models, polynomial, spectral analysis, and modified AR model, are studied and compared in fitting and predicting clock deviation based on the data sequence derived from two-way satellite time and freq...Three functional models, polynomial, spectral analysis, and modified AR model, are studied and compared in fitting and predicting clock deviation based on the data sequence derived from two-way satellite time and frequency transfer. A robust equivalent weight is applied, which controls the significant influence of outlying observations. Some conclusions show that the prediction precision of robust estimation is better than that of LS. The prediction precision calculated from smoothed observations is higher than that calculated from sampling observations. As a count of the obvious period variations in the clock deviation sequence, the predicted values of polynomial model are implausible. The prediction precision of spectral analysis model is very low, but the principal periods can be determined. The prediction RMS of 6-hour extrapolation interval is Ins or so, when modified AR model is used.展开更多
This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the...This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.展开更多
For the high precision time synchronization demand of ships, advantages and disadvantages of the present time transfer methods are analyzed, the two-way microwave time transfer (TWMTT) method is adopted to resolve t...For the high precision time synchronization demand of ships, advantages and disadvantages of the present time transfer methods are analyzed, the two-way microwave time transfer (TWMTT) method is adopted to resolve the time synchronization problem in the Naval Ship Formation. After expounding the principle and system composition of TWMTT method, the various factors influencing the synchronous precision are analyzed, such as time-interval measurement error, TWMTT equipment delay error, signal propagation error in air, and signal delay error caused by shipping. To improve the time synchronization precision, all the error sources above are deduced with mathematical measures to definite the critical one, and the signal processing measures such as Pseudo code spread spectrum time comparison signal generation technology, FFT fast acquisition technology and precise tracking technology are used into the modem which is the core equipment of the TWMTT. And, calibration method of TWMTT equipment delay are developed. Through theoretical a- nalysis and simulation verification, the precision of shipboard two-way microwave time synchroniza- tion can reach 1 ns.展开更多
The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the ...The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering.展开更多
The advancement of small satellites is promoting the development of distributed satellite systems,and for the latter,it is essential to coordinate the spatial and temporal relations between mutually visible satellites...The advancement of small satellites is promoting the development of distributed satellite systems,and for the latter,it is essential to coordinate the spatial and temporal relations between mutually visible satellites.By now,dual one-way ranging(DOWR)and two-way time transfer(TWTT)are generally integrated in the same software and hardware system to meet the limitations of small satellites in terms of size,weight and power(SWaP)consumption.However,studies show that pseudo-noise regenerative ranging(PNRR)performs better than DOWR if some advanced implementation technologies are employed.Besides,PNRR has no requirement on time synchronization.To apply PNRR to small satellites,and meanwhile,meet the demand for time difference measurement,we propose the round-way time difference measurement,which can be combined with PNRR to form a new integrated system without exceeding the limits of SWaP.The new integrated system can provide distributed small satellite systems with on-orbit high-accuracy and high-precision distance measurement and time difference measurement in real time.Experimental results show that the precision of ranging is about 1.94 cm,and that of time difference measurement is about 78.4 ps,at the signal to noise ratio of 80 dBHz.展开更多
An improved measurement algorithm, based upon the theory of two-way time transfer ( TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on...An improved measurement algorithm, based upon the theory of two-way time transfer ( TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on a relative motion model of two satellites, and eliminates the measurement error caused by the equipment delay when a satellite moves at a high speed. Theoretical analysis and simulation results demonstrate that in comparison with the conventional TWTT algorithm, the proposed algorithm can significantly enhance the measurement accuracy of the inter-satellite ranging and time synchronization, and the algorithm is more effective with the relative velocity between the satellites and transmitting delay becoming larger.展开更多
Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchron...Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchronization is hardly influenced by satellite orbit error,atmosphere delay,tracking station coordinate error and measurement model error.Meanwhile,single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination(MPOD)with pseudo-range and carrier phase of monitor receiver.It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison,and that may lead to a substitute for orbit evaluation by SLR.In this article,the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS.Considering the all-weather and real-time operation mode of two-way time comparison,the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization.In addition,the orbit error can be predicted and corrected in a short time based on its periodic characteristic.It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message,and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%.Though it is still hard to make accuracy improvement for Precision Orbit Determination(POD)and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization,in this paper,a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error.展开更多
低轨卫星短突发通信具有多普勒频偏和多普勒变化率较大、突发符号较短和突发信号导频长度受限等特点,采用传统的时频同步算法在低信噪比条件下性能较差。为了提高时间同步和频偏估计性能,准确完成同步过程,基于时分多址(Time Division M...低轨卫星短突发通信具有多普勒频偏和多普勒变化率较大、突发符号较短和突发信号导频长度受限等特点,采用传统的时频同步算法在低信噪比条件下性能较差。为了提高时间同步和频偏估计性能,准确完成同步过程,基于时分多址(Time Division Multiple Access,TDMA)接入帧结构提出一种新的时频同步算法。该算法采用二维搜索算法进行整数倍的时延估计和粗频偏估计;在补偿大频偏和整数倍时延后,估计小数倍时延;采用结合低通滤波的快速傅里叶变换(Fast Fourier Transform,FFT)算法进行精频偏估计。仿真结果表明,每符号能量与噪声功率谱密度比值(Ratio of Symbol Energy to Noise Power Spectral Density,E_(s)/N_(0))为4.5 dB时,时延检测概率准确率达到99.99%,整体解调性能相较于M&M等算法有2 dB以上的性能提升。展开更多
基金supported by the National Natural Science Foundation of China(61401389)the Joint Fund of the Ministry of Education of China(6141A02033310)
文摘Micro-satellite cluster enables a whole new class of missions for communications, remote sensing, and scientific research for both civilian and military purposes. Synchronizing the time of the satellites in a cluster is important for both cluster sensing capabilities and its autonomous operating. However, the existing time synchronization methods are not suitable for microsatellite cluster, because it requires too many human interventions and occupies too much ground control resource. Although, data post-process may realize the equivalent time synchronization, it requires processing time and powerful computing ability on the ground, which cannot be implemented by cluster itself. In order to autonomously establish and maintain the time benchmark in a cluster, we propose a compact time difference compensation system(TDCS), which is a kind of time control loop that dynamically adjusts the satellite reference frequency according to the time difference. Consequently, the time synchronization in the cluster can be autonomously achieved on-orbit by synchronizing the clock of other satellites to a chosen one's. The experimental result shows that the standard deviation of time synchronization is about 102 ps when the carrier to noise ratio(CNR) is 95 d BHz, and the standard deviation of corresponding frequency difference is approximately0.36 Hz.
基金Supported by the National Natural Science Foundations of China (No. 40474001, No. 40274002, No. 40604003).
文摘Three functional models, polynomial, spectral analysis, and modified AR model, are studied and compared in fitting and predicting clock deviation based on the data sequence derived from two-way satellite time and frequency transfer. A robust equivalent weight is applied, which controls the significant influence of outlying observations. Some conclusions show that the prediction precision of robust estimation is better than that of LS. The prediction precision calculated from smoothed observations is higher than that calculated from sampling observations. As a count of the obvious period variations in the clock deviation sequence, the predicted values of polynomial model are implausible. The prediction precision of spectral analysis model is very low, but the principal periods can be determined. The prediction RMS of 6-hour extrapolation interval is Ins or so, when modified AR model is used.
基金supported by the China Postdotoral Science Foundation(20060401004)
文摘This article analyzes the shift factors of the descending node local time for sun-synchronous satellites and proposes a shift control method to keep the local time shift within an allowance range. It is found that the satellite orbit design and the orbit injection deviation are the causes for the initial shift velocity, whereas the atmospheric drag and the sun gravitational perturbation produce the shift acceleration. To deal with these shift factors, a shift control method is put forward, through such methods as orbit variation design, orbit altitude, and inclination keeping control. The simulation experiment and practical application have proved the effectiveness of this control method.
基金Supported by the Ministerial Level Foundation(2102812)
文摘For the high precision time synchronization demand of ships, advantages and disadvantages of the present time transfer methods are analyzed, the two-way microwave time transfer (TWMTT) method is adopted to resolve the time synchronization problem in the Naval Ship Formation. After expounding the principle and system composition of TWMTT method, the various factors influencing the synchronous precision are analyzed, such as time-interval measurement error, TWMTT equipment delay error, signal propagation error in air, and signal delay error caused by shipping. To improve the time synchronization precision, all the error sources above are deduced with mathematical measures to definite the critical one, and the signal processing measures such as Pseudo code spread spectrum time comparison signal generation technology, FFT fast acquisition technology and precise tracking technology are used into the modem which is the core equipment of the TWMTT. And, calibration method of TWMTT equipment delay are developed. Through theoretical a- nalysis and simulation verification, the precision of shipboard two-way microwave time synchroniza- tion can reach 1 ns.
文摘The key to control Spin-Stabilized Satellites Synchronously is to determine the models for calculating and correcting of time-delay at the different situations. Based on the principle of Synchronous-Control mode, the methods of determining the models of calculating and correcting of time-delay are proposed. The methods have been proved to be effective in real satellite control engineering.
基金supported by the National Natural Science Foundation of China(61401389).
文摘The advancement of small satellites is promoting the development of distributed satellite systems,and for the latter,it is essential to coordinate the spatial and temporal relations between mutually visible satellites.By now,dual one-way ranging(DOWR)and two-way time transfer(TWTT)are generally integrated in the same software and hardware system to meet the limitations of small satellites in terms of size,weight and power(SWaP)consumption.However,studies show that pseudo-noise regenerative ranging(PNRR)performs better than DOWR if some advanced implementation technologies are employed.Besides,PNRR has no requirement on time synchronization.To apply PNRR to small satellites,and meanwhile,meet the demand for time difference measurement,we propose the round-way time difference measurement,which can be combined with PNRR to form a new integrated system without exceeding the limits of SWaP.The new integrated system can provide distributed small satellite systems with on-orbit high-accuracy and high-precision distance measurement and time difference measurement in real time.Experimental results show that the precision of ranging is about 1.94 cm,and that of time difference measurement is about 78.4 ps,at the signal to noise ratio of 80 dBHz.
基金Supported by the National High Technology Research and Development Program of China(2012AA1406)
文摘An improved measurement algorithm, based upon the theory of two-way time transfer ( TWTT), is proposed to measure satellites with high speeds. The algorithm makes theoretical analyses and corresponding deductions on a relative motion model of two satellites, and eliminates the measurement error caused by the equipment delay when a satellite moves at a high speed. Theoretical analysis and simulation results demonstrate that in comparison with the conventional TWTT algorithm, the proposed algorithm can significantly enhance the measurement accuracy of the inter-satellite ranging and time synchronization, and the algorithm is more effective with the relative velocity between the satellites and transmitting delay becoming larger.
基金supported by the National Natural Science Foundation of China(Grant No.11103064)the Basic Research Foundation Program of Education Ministry Key Laboratory for Earth Space Environment and Geodetic survey,China(Grant No.11-01-06)
文摘Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchronization is hardly influenced by satellite orbit error,atmosphere delay,tracking station coordinate error and measurement model error.Meanwhile,single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination(MPOD)with pseudo-range and carrier phase of monitor receiver.It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison,and that may lead to a substitute for orbit evaluation by SLR.In this article,the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS.Considering the all-weather and real-time operation mode of two-way time comparison,the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization.In addition,the orbit error can be predicted and corrected in a short time based on its periodic characteristic.It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message,and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%.Though it is still hard to make accuracy improvement for Precision Orbit Determination(POD)and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization,in this paper,a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error.
文摘低轨卫星短突发通信具有多普勒频偏和多普勒变化率较大、突发符号较短和突发信号导频长度受限等特点,采用传统的时频同步算法在低信噪比条件下性能较差。为了提高时间同步和频偏估计性能,准确完成同步过程,基于时分多址(Time Division Multiple Access,TDMA)接入帧结构提出一种新的时频同步算法。该算法采用二维搜索算法进行整数倍的时延估计和粗频偏估计;在补偿大频偏和整数倍时延后,估计小数倍时延;采用结合低通滤波的快速傅里叶变换(Fast Fourier Transform,FFT)算法进行精频偏估计。仿真结果表明,每符号能量与噪声功率谱密度比值(Ratio of Symbol Energy to Noise Power Spectral Density,E_(s)/N_(0))为4.5 dB时,时延检测概率准确率达到99.99%,整体解调性能相较于M&M等算法有2 dB以上的性能提升。