Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-pow...Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-power and low-cost space applications.In this study,a shape-memory polymer composite(SMPC)boom was designed,fabricated,and characterized for flexible reel-type solar arrays.The SMPC boom was fabricated from a smart material,a shape-memory polymer composite,whose mechanical properties were tested.Additionally,a mathematical model of the bending stiffness of the SMPC boom was developed,and the bending and buckling behaviors of the boom were further analyzed using the ABAQUS software.An SMPC boom was fabricated to demonstrate its shape memory characteristics,and the driving force of the booms with varying geometric parameters was investigated.We also designed and manufactured a reel-type solar array based on an SMPC boom and verified its self-deployment capability.The results indicated that the SMPC boom can be used as a deployable unit to roll out flexible solar arrays.展开更多
This study presents a semi-analytical solution to describe the behavior of shape memory polymers(SMPs) based on the nonlinear thermo-visco-hyperelasticity which originates from the concepts of internal state variables...This study presents a semi-analytical solution to describe the behavior of shape memory polymers(SMPs) based on the nonlinear thermo-visco-hyperelasticity which originates from the concepts of internal state variables and rational thermodynamics.This method is developed for the finite bending of multilayers in a dual-shape memory effect(SME) cycle.The layer number and layering order are investigated for two different SMPs and a hyperelastic material.In addition to the semi-analytical solution,the finite element simulation is performed to verify the predicted results,where the outcomes demonstrate the excellent accuracy of the proposed solution for predicting the behavior of the multilayer SMPs.Since this method has a much lower computational cost than the finite element method(FEM),it can be used as an effective tool to analyze the SMP behavior under different conditions,including different materials,different geometries,different layer numbers,and different layer arrangements.展开更多
A review is presented in this paper on Shape Memory Polymers (SMPs) and their applications to smart, particularly textile products. Different kinds of SMPs developed by researchers around the world, characteristics of...A review is presented in this paper on Shape Memory Polymers (SMPs) and their applications to smart, particularly textile products. Different kinds of SMPs developed by researchers around the world, characteristics of SMPs and their applications, particularly to smart textiles are summarized. Current situations and potential application areas as well as future developments of smart textiles with shape memory polymers are discussed.展开更多
The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are p...The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.展开更多
Transfer printing based on switchable adhesive is essential for developing unconventional systems,including flexible electronics,stretchable electronics,and micro light-emitting diode(LED)displays.Here we report a des...Transfer printing based on switchable adhesive is essential for developing unconventional systems,including flexible electronics,stretchable electronics,and micro light-emitting diode(LED)displays.Here we report a design of switchable dry adhesive based on shape memory polymer(SMP)with hemispherical indenters,which offers a continuously tunable and reversible adhesion through the combination of the preloading effect and the thermal actuation of SMP.Experimental and numerical studies reveal the fundamental aspects of design,fabrication,and operation of the switchable dry adhesive.Demonstrations of this adhesive concept in transfer printing of flat objects(e.g.,silicon wafers),three-dimensional(3D)objects(e.g.,stainless steel balls),and rough objects(e.g.,frosted glasses)in two-dimensional(2D)or 3D layouts illustrate its unusual manipulation capabilities in heterogeneous material integration applications.展开更多
A thermoviscoelastic modeling approach is developed to predict the recovery behaviors of the thermally activated amorphous shape memory polymers(SMPs)based on the generalized finite deformation viscoelasticity theory....A thermoviscoelastic modeling approach is developed to predict the recovery behaviors of the thermally activated amorphous shape memory polymers(SMPs)based on the generalized finite deformation viscoelasticity theory.In this paper,a series of moduli and relaxation times of the generalized Maxwell model is estimated from the stress relaxation master curve by using the nonlinear regression(NLREG)method.Assuming that the amorphous SMPs are approximately incompressible isotropic elastomers in the rubbery state,the hyperelastic response of the materials is well modeled with a hyperelastic model in Ogden form.In addition,the Williams-Landel-Ferry(WLF)equation is used to describe the horizontal shift factor obtained with time-temperature superposition principle(TTSP).The finite element simulations show good agreement with the experimental thermomechanical behaviors.Moreover,the possibility of developing a temperature-responsive intravascular stent with the SMP studied here is investigated in terms of its thermomechanical property.Therefore,it can be concluded that the model has good prediction capabilities for the recovery behaviors of amorphous SMPs.展开更多
Biodegradable shape memory polymers( SMPs) are a class of intelligent materials with great potential for imparting biomaterial scaffolds multifunctionality in the field of tissue engineering and regenerative medicine....Biodegradable shape memory polymers( SMPs) are a class of intelligent materials with great potential for imparting biomaterial scaffolds multifunctionality in the field of tissue engineering and regenerative medicine.In this study,the biodegradable SMP poly( D,L-lactide-co-trimethylene carbonate)( PLMC) incorporated with the dexamethasone( Dex),which was a kind of synthetic bone-formation inducing factor,was fabricated into nanofibers via electrospinning.The morphology,constituent,thermal and mechanical properties of the produced Dex / PLMC composite nanofibers were characterized by scanning electron microscopy( SEM), Fourier transform infrared spectroscopy( FTIR), differential scanning calorimetry( DSC),and tensile testing,respectively.Then,ultrasound was employed as a remote stimulus to regulate the Dex releasing behavior from the composite nanofibers.It was found that the generated Dex /PLMC composite nanofibers had a uniform and smooth morphology with a diameter of ca.564 nm.Mechanical testing results showed that incorporation of the Dex gave rise to improved mechanical performance with the tensile strength,Young's modulus and strainat-break increased by 18.2%,20.0% and 64.4%,respectively.DSC data revealed that the glass transition temperature( Tg) of the composite nanofibers, i.e., the thermal transition temperature( Ttrans) for activating shape memory effect, was 39.7 ℃.Moreover, the release kinetics of the encapsulated Dex in the nanofibers could be manipulated by varying the acoustic power and insonation duration.These results suggested that the newly developed Dex / PLMC nanofibers could be a promising drug delivery system for applications in bone tissue engineering( BTE).展开更多
The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, se...The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shapesetting) phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles-an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D) printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.展开更多
Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two l...Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two layers are SMPs with different thermal transition temperatures.By designing specific thermomechanical processes,the mismatched deformation between the two layers leads to a morphology change of ring-shaped bilayer structures from a smooth ring to a gear-like buckling shape under cooling and a reversible recovery to the smooth shape under heating.Such a morphology change is ascribed to occurrence and recovery of thermoelastic buckling.This method was validated by finite element simulation.We experimentally investigated the influence of pre-strain on buckling,and it was found that both the buckling occurrence and recovery temperature vary with pre-strain.Furthermore,considering a ring-shaped SMP-SMP bilayer structure,finite element analysis was conducted to study the influence of film thickness and modulus ratio of two layers on buckling behavior.The results showed that the critical buckling wavelength was greatly influenced by film thickness and modulus ratio.W e made a theoretical analysis that accorded well with the numerical results.展开更多
Once China’s Tianwen-1 Mars probe arrived in a Mars orbit after a seven-month flight in the deep cold space environment,it would be urgently necessary to monitor its state and the surrounding environment.To address t...Once China’s Tianwen-1 Mars probe arrived in a Mars orbit after a seven-month flight in the deep cold space environment,it would be urgently necessary to monitor its state and the surrounding environment.To address this issue,we developed a flexible deployable subsystem based on shape memory polymer composites(SMPC-FDS)with a large folding ratio,which incorporates a camera and two temperature telemetry points for monitoring the local state of the Mars orbiter and the deep space environment.Here,we report on the development,testing,and successful application of the SMPC-FDS.Before reaching its Mars remote-sensing orbit,the SMPC-FDS is designed to be in a folded state with high stiffness;after reaching orbit,it is in a deployed state with a large envelope.The transition from the folded state to the deployed state is achieved by electrically heating the shape memory polymer composites(SMPCs);during this process,the camera on the SMPC-FDS can capture the local state of the orbiter from multiple angles.Moreover,temperature telemetry points on the SMPC-FDS provide feedback on the environment temperature and the temperature change of the SMPCs during the energization process.By simulating a Mars on-orbit space environment,the engineering reliability of the SMPC-FDS was comprehensively verified in terms of the material properties,structural dynamic performance,and thermal vacuum deployment feasibility.Since the launch of Tianwen-1 on 23 July 2020,scientific data on the temperature environment around Tianwen-1 has been successfully acquired from the telemetry points on the SMPCFDS,and the local state of the orbiter has been photographed in orbit,showing the national flag of China fixed on the orbiter.展开更多
The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The res...The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The results indicated that the training procedure is beneficial to get the better TWSME. The two-way shape memory strain increases with increasing the training strain. And it decreases with increasing the training temperature. The TWSME obtained in the present alloy shows poorer stability compared with that obtained in the TiNi alloys.展开更多
A two-way shape memory effect (TWSM E) in the Ti46.3Ni44.7Nb9 alloy has been systematically investigated by means of bending test and transmission electron microscopy (TEM ) observations. Based on the analysis of the ...A two-way shape memory effect (TWSM E) in the Ti46.3Ni44.7Nb9 alloy has been systematically investigated by means of bending test and transmission electron microscopy (TEM ) observations. Based on the analysis of the microstructure after training. the mechanism of TWSME in the Ti46.3 Ni44.7Nb9 alloy has been discussed.展开更多
Two-way shape memory effect (TWSME) was induced into the TiNi shape memoryalloys (SMAs) spring by thermomechanical training after annealing treatment, which has promisingapplication in micro-actuating fields. The TWSM...Two-way shape memory effect (TWSME) was induced into the TiNi shape memoryalloys (SMAs) spring by thermomechanical training after annealing treatment, which has promisingapplication in micro-actuating fields. The TWSME spring can contract upon heating and extend uponcooling. The results show that there is an increase of the recovery ratio up to a maximum TWSME of45%. During the training procedure, transformation temperatures and hysteresis were measured bydifferent scanning calorimetry (DSC). The results show that A_s (reverse transformation starttemperature) and A_f (reverse transformation finish temperature) shift to lower temperature aftertraining. The intervals of A_fA_s and M_s-M_f (M_s and M_f are the martensite start and finishtemperatures, respectively) increase and the heat of transformation decreases after training. Theelectrothermal driving characteristics of the TWSME springs were also investigated with alternatingcurrent density of 3.2-14.7 A/mm^2. It is found that the time response and the maximum contractionratio greatly depend on the magnitude of the electrical current density.展开更多
The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increa...The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increasing the number of cycles, while A(s) and A(f) temperature decrease during thermal cycling. The total strain at and permanent strain epsilon (p) increase with increasing applied stress and number of cycles. The two-way shape memory effect can be improved by proper thermal cycling training under loading, while excessively high applied stress results in the deterioration of TWSME. The reason for the changes in martensitic transformation characteristics and two-way shape memory effect during thermal cycling under loading is discussed based on the analysis of microstructure by TEM observations.展开更多
Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adh...Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adhesion performance and excellent dynamic switching properties is still a challenge.A Shape Memory Polymer Bio-inspired Adhesive(SMPBA)was successfully developed,well realizing high adhesion(about 337 kPa),relatively low preload(about90 kPa),high adhesion-to-preload ratio(about 3.74),high switching ratio(about 6.74),and easy detachment,which are attributed to the controlled modulus and contact area by regulating temperature and the Shape Memory Effect(SME).Furthermore,SMPBA exhibits adhesion strength of80–337 kPa on various surfaces(silicon,iron,and aluminum)with different roughness(Ra=0.021–10.280)because of the conformal contact,reflecting outstanding surface adaptability.The finite element analysis verifies the bending ability under different temperatures,while the adhesion model analyzes the influence of preload on contact area and adhesion.Furthermore,an Unmanned Aerial Vehicle(UAV)landing device with SMPBA was designed and manufactured to achieve UAV landing on and detaching from various surfaces.This study provides a novel switchable bio-inspired adhesive and UAV landing method.展开更多
The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling...The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling deformation of the inhomogeneous laminate.This paper presents a macroscopic model for buckling of an inhomogeneous SMPC laminate under initial biaxial prestrains.Both linear and nonlinear buckling analyses are carried out using the energy method.The influences of prestrain biaxiality,temperature,and ply angle on the buckling wavelength,critical buckling prestrain,and buckling amplitude are calculated.The results demonstrate that the critical buckling wavelength of the SMPC laminate is independent of the prestrain,while the amplitude is almost independent of temperature.In addition,the optimal fiber stacking configuration with the maximum critical buckling prestrains of inhomogeneous SMPC laminates is determined by a genetic algorithm.展开更多
Snap-acting two way shape memory device can be obtained by using the design proposed by authors.Some essential parameters which characterize the properties of device have been pro- posed also in this paper.And the pri...Snap-acting two way shape memory device can be obtained by using the design proposed by authors.Some essential parameters which characterize the properties of device have been pro- posed also in this paper.And the principle and method according to which a practical snap-acting device can be designed have been described.展开更多
The snap-action behavior of a Ni-Ti alloy disc which is controlled by combination of a nonlinear stress field and temperature has been studied.After treatment for two-way shape memory,all shape memory strain of snap-a...The snap-action behavior of a Ni-Ti alloy disc which is controlled by combination of a nonlinear stress field and temperature has been studied.After treatment for two-way shape memory,all shape memory strain of snap-action finishes abruptly at a certain temperature within an interval of less than 1 ms.The results of resistance measurement and in-situ X-ray diffraction indicate that the snap-action strain is mainly resulted from the snap-action β (?)R transformation.展开更多
The two-way shape memory effect in a Ti-18.5Zr-10Nb-3.5Ta high-temperature shape memory alloy was investigated.X-ray diffraction measurem ent shows that the alloy is composed of orthorhombicα"-martensite.ωphase...The two-way shape memory effect in a Ti-18.5Zr-10Nb-3.5Ta high-temperature shape memory alloy was investigated.X-ray diffraction measurem ent shows that the alloy is composed of orthorhombicα"-martensite.ωphase is not found in Ti-18.5Zr-10Nb-3.5Ta alloy due to the suppressing effect of Ta element.Theα"-martensite laths are found in the transmission electron microscope observation;after the bending deformation,there appear a lot of dislocations.The alloy exhibits a shape memory strain of 3.8%aud a high reverse martensite transformation start temperature of 464 K.The maximum two-way shape memory strain of 1.2%is obtained in the alloy with the prebending training strain of 10%.The mechanism can be ascribed to the effect of internal stress field caused by dislocations.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52105013 and 51835002)Self-Planned Task of State Key Laboratory of Robotics and System(HIT)of China(Grant No.SKLRS202202C)China Postdoctoral Science Foundation(Grant No.2020M681087).
文摘Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-power and low-cost space applications.In this study,a shape-memory polymer composite(SMPC)boom was designed,fabricated,and characterized for flexible reel-type solar arrays.The SMPC boom was fabricated from a smart material,a shape-memory polymer composite,whose mechanical properties were tested.Additionally,a mathematical model of the bending stiffness of the SMPC boom was developed,and the bending and buckling behaviors of the boom were further analyzed using the ABAQUS software.An SMPC boom was fabricated to demonstrate its shape memory characteristics,and the driving force of the booms with varying geometric parameters was investigated.We also designed and manufactured a reel-type solar array based on an SMPC boom and verified its self-deployment capability.The results indicated that the SMPC boom can be used as a deployable unit to roll out flexible solar arrays.
基金Project supported by the Iran National Science Foundation (INSF)(No.98027408)。
文摘This study presents a semi-analytical solution to describe the behavior of shape memory polymers(SMPs) based on the nonlinear thermo-visco-hyperelasticity which originates from the concepts of internal state variables and rational thermodynamics.This method is developed for the finite bending of multilayers in a dual-shape memory effect(SME) cycle.The layer number and layering order are investigated for two different SMPs and a hyperelastic material.In addition to the semi-analytical solution,the finite element simulation is performed to verify the predicted results,where the outcomes demonstrate the excellent accuracy of the proposed solution for predicting the behavior of the multilayer SMPs.Since this method has a much lower computational cost than the finite element method(FEM),it can be used as an effective tool to analyze the SMP behavior under different conditions,including different materials,different geometries,different layer numbers,and different layer arrangements.
文摘A review is presented in this paper on Shape Memory Polymers (SMPs) and their applications to smart, particularly textile products. Different kinds of SMPs developed by researchers around the world, characteristics of SMPs and their applications, particularly to smart textiles are summarized. Current situations and potential application areas as well as future developments of smart textiles with shape memory polymers are discussed.
基金Project supported by the National Key Research and Development Program of China(No.2017YFC0307604)the Talent Foundation of China University of Petroleum(No.Y1215042)the Graduate Innovation Program of China University of Petroleum(East China)(No.YCX2019084)
文摘The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.
基金The authors acknowledge the supports of the National Natural Science Foundation of China(Grant Nos.11872331 and U20A6001)Zhejiang University K.P.Chao’s High Technology Development Foundation.
文摘Transfer printing based on switchable adhesive is essential for developing unconventional systems,including flexible electronics,stretchable electronics,and micro light-emitting diode(LED)displays.Here we report a design of switchable dry adhesive based on shape memory polymer(SMP)with hemispherical indenters,which offers a continuously tunable and reversible adhesion through the combination of the preloading effect and the thermal actuation of SMP.Experimental and numerical studies reveal the fundamental aspects of design,fabrication,and operation of the switchable dry adhesive.Demonstrations of this adhesive concept in transfer printing of flat objects(e.g.,silicon wafers),three-dimensional(3D)objects(e.g.,stainless steel balls),and rough objects(e.g.,frosted glasses)in two-dimensional(2D)or 3D layouts illustrate its unusual manipulation capabilities in heterogeneous material integration applications.
基金supported by the Natural Science Foundation of Jiangsu Province of China (No. BK20170759)the National Natural Science Foundation of China (No. 11572153)+3 种基金Jiangsu Government Scholarship for Overseas Studiesa project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Provincethe Doctor Special Foundation and the Research Fund of Nanjing Institute of Technology (Nos. ZKJ201603, YKJ201312)
文摘A thermoviscoelastic modeling approach is developed to predict the recovery behaviors of the thermally activated amorphous shape memory polymers(SMPs)based on the generalized finite deformation viscoelasticity theory.In this paper,a series of moduli and relaxation times of the generalized Maxwell model is estimated from the stress relaxation master curve by using the nonlinear regression(NLREG)method.Assuming that the amorphous SMPs are approximately incompressible isotropic elastomers in the rubbery state,the hyperelastic response of the materials is well modeled with a hyperelastic model in Ogden form.In addition,the Williams-Landel-Ferry(WLF)equation is used to describe the horizontal shift factor obtained with time-temperature superposition principle(TTSP).The finite element simulations show good agreement with the experimental thermomechanical behaviors.Moreover,the possibility of developing a temperature-responsive intravascular stent with the SMP studied here is investigated in terms of its thermomechanical property.Therefore,it can be concluded that the model has good prediction capabilities for the recovery behaviors of amorphous SMPs.
基金the Fundamental Research Funds for the Central Universities,China(No.14D110519)Pujiang Talent Program Funded by the Science and Technology Commission of Shanghai Municipality,China(No.10PJ1400200)National Natural Science Foundation of China(No.51073032)
文摘Biodegradable shape memory polymers( SMPs) are a class of intelligent materials with great potential for imparting biomaterial scaffolds multifunctionality in the field of tissue engineering and regenerative medicine.In this study,the biodegradable SMP poly( D,L-lactide-co-trimethylene carbonate)( PLMC) incorporated with the dexamethasone( Dex),which was a kind of synthetic bone-formation inducing factor,was fabricated into nanofibers via electrospinning.The morphology,constituent,thermal and mechanical properties of the produced Dex / PLMC composite nanofibers were characterized by scanning electron microscopy( SEM), Fourier transform infrared spectroscopy( FTIR), differential scanning calorimetry( DSC),and tensile testing,respectively.Then,ultrasound was employed as a remote stimulus to regulate the Dex releasing behavior from the composite nanofibers.It was found that the generated Dex /PLMC composite nanofibers had a uniform and smooth morphology with a diameter of ca.564 nm.Mechanical testing results showed that incorporation of the Dex gave rise to improved mechanical performance with the tensile strength,Young's modulus and strainat-break increased by 18.2%,20.0% and 64.4%,respectively.DSC data revealed that the glass transition temperature( Tg) of the composite nanofibers, i.e., the thermal transition temperature( Ttrans) for activating shape memory effect, was 39.7 ℃.Moreover, the release kinetics of the encapsulated Dex in the nanofibers could be manipulated by varying the acoustic power and insonation duration.These results suggested that the newly developed Dex / PLMC nanofibers could be a promising drug delivery system for applications in bone tissue engineering( BTE).
基金supported by the Singapore Centre for 3D Printing which is funded by the Singapore National Research Foundation.
文摘The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D) printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shapesetting) phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles-an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D) printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.
基金This work was supported by the National Natural Science Foundations of China(Grant 11272044)the Fundamental Research Funds for the Central Universities(Grant 2018JBM305).
文摘Shape memory polymers(SMPs)usually have a one-way shape memory effect.In this paper,an easy-operating method to realize a two-way shape memory effect was demonstrated in a ring-shaped bilayer structure where the two layers are SMPs with different thermal transition temperatures.By designing specific thermomechanical processes,the mismatched deformation between the two layers leads to a morphology change of ring-shaped bilayer structures from a smooth ring to a gear-like buckling shape under cooling and a reversible recovery to the smooth shape under heating.Such a morphology change is ascribed to occurrence and recovery of thermoelastic buckling.This method was validated by finite element simulation.We experimentally investigated the influence of pre-strain on buckling,and it was found that both the buckling occurrence and recovery temperature vary with pre-strain.Furthermore,considering a ring-shaped SMP-SMP bilayer structure,finite element analysis was conducted to study the influence of film thickness and modulus ratio of two layers on buckling behavior.The results showed that the critical buckling wavelength was greatly influenced by film thickness and modulus ratio.W e made a theoretical analysis that accorded well with the numerical results.
基金supported by the National Natural Science Foundation of China(11632005)the Heilongjiang Touyan Innovation Team Program。
文摘Once China’s Tianwen-1 Mars probe arrived in a Mars orbit after a seven-month flight in the deep cold space environment,it would be urgently necessary to monitor its state and the surrounding environment.To address this issue,we developed a flexible deployable subsystem based on shape memory polymer composites(SMPC-FDS)with a large folding ratio,which incorporates a camera and two temperature telemetry points for monitoring the local state of the Mars orbiter and the deep space environment.Here,we report on the development,testing,and successful application of the SMPC-FDS.Before reaching its Mars remote-sensing orbit,the SMPC-FDS is designed to be in a folded state with high stiffness;after reaching orbit,it is in a deployed state with a large envelope.The transition from the folded state to the deployed state is achieved by electrically heating the shape memory polymer composites(SMPCs);during this process,the camera on the SMPC-FDS can capture the local state of the orbiter from multiple angles.Moreover,temperature telemetry points on the SMPC-FDS provide feedback on the environment temperature and the temperature change of the SMPCs during the energization process.By simulating a Mars on-orbit space environment,the engineering reliability of the SMPC-FDS was comprehensively verified in terms of the material properties,structural dynamic performance,and thermal vacuum deployment feasibility.Since the launch of Tianwen-1 on 23 July 2020,scientific data on the temperature environment around Tianwen-1 has been successfully acquired from the telemetry points on the SMPCFDS,and the local state of the orbiter has been photographed in orbit,showing the national flag of China fixed on the orbiter.
文摘The Effect of the thermal cycling training under constant strain on the two-way shape memory effect (TWSME) in a Ti36l\li49Hf15 high temperature shape memory alloy (SMA) has been investigated by bending tests. The results indicated that the training procedure is beneficial to get the better TWSME. The two-way shape memory strain increases with increasing the training strain. And it decreases with increasing the training temperature. The TWSME obtained in the present alloy shows poorer stability compared with that obtained in the TiNi alloys.
文摘A two-way shape memory effect (TWSM E) in the Ti46.3Ni44.7Nb9 alloy has been systematically investigated by means of bending test and transmission electron microscopy (TEM ) observations. Based on the analysis of the microstructure after training. the mechanism of TWSME in the Ti46.3 Ni44.7Nb9 alloy has been discussed.
基金This project is financially supported by the National Natural Science Foundation of China (No. 10175042)
文摘Two-way shape memory effect (TWSME) was induced into the TiNi shape memoryalloys (SMAs) spring by thermomechanical training after annealing treatment, which has promisingapplication in micro-actuating fields. The TWSME spring can contract upon heating and extend uponcooling. The results show that there is an increase of the recovery ratio up to a maximum TWSME of45%. During the training procedure, transformation temperatures and hysteresis were measured bydifferent scanning calorimetry (DSC). The results show that A_s (reverse transformation starttemperature) and A_f (reverse transformation finish temperature) shift to lower temperature aftertraining. The intervals of A_fA_s and M_s-M_f (M_s and M_f are the martensite start and finishtemperatures, respectively) increase and the heat of transformation decreases after training. Theelectrothermal driving characteristics of the TWSME springs were also investigated with alternatingcurrent density of 3.2-14.7 A/mm^2. It is found that the time response and the maximum contractionratio greatly depend on the magnitude of the electrical current density.
文摘The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increasing the number of cycles, while A(s) and A(f) temperature decrease during thermal cycling. The total strain at and permanent strain epsilon (p) increase with increasing applied stress and number of cycles. The two-way shape memory effect can be improved by proper thermal cycling training under loading, while excessively high applied stress results in the deterioration of TWSME. The reason for the changes in martensitic transformation characteristics and two-way shape memory effect during thermal cycling under loading is discussed based on the analysis of microstructure by TEM observations.
基金financial support from the National Natural Science Foundation of China(No.51605220)the Jiangsu Province Natural Science Foundation,China(No.BK20160793)+1 种基金the Postgraduate Research and Practice Innovation Program of Nanjing University of Aeronautics and Astronautics,China(No.xcxjh20210514)the Fundamental Research Funds for the Central Universities,China(No.XCA2205406)。
文摘Controlled and switchable adhesion is commonly observed in biological systems.In recent years,many scholars have focused on making switchable bio-inspired adhesives.However,making a bio-inspired adhesive with high adhesion performance and excellent dynamic switching properties is still a challenge.A Shape Memory Polymer Bio-inspired Adhesive(SMPBA)was successfully developed,well realizing high adhesion(about 337 kPa),relatively low preload(about90 kPa),high adhesion-to-preload ratio(about 3.74),high switching ratio(about 6.74),and easy detachment,which are attributed to the controlled modulus and contact area by regulating temperature and the Shape Memory Effect(SME).Furthermore,SMPBA exhibits adhesion strength of80–337 kPa on various surfaces(silicon,iron,and aluminum)with different roughness(Ra=0.021–10.280)because of the conformal contact,reflecting outstanding surface adaptability.The finite element analysis verifies the bending ability under different temperatures,while the adhesion model analyzes the influence of preload on contact area and adhesion.Furthermore,an Unmanned Aerial Vehicle(UAV)landing device with SMPBA was designed and manufactured to achieve UAV landing on and detaching from various surfaces.This study provides a novel switchable bio-inspired adhesive and UAV landing method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12102107 and 12272113)China National Postdoctoral Program for Innovative Talents(No.BX2021090).
文摘The mismatch in thermal expansion coefficients between the fiber-rich and resin-rich regions of a shape memory polymer composite(SMPC)laminate,along with the residual strain during SMPC fabrication,results in buckling deformation of the inhomogeneous laminate.This paper presents a macroscopic model for buckling of an inhomogeneous SMPC laminate under initial biaxial prestrains.Both linear and nonlinear buckling analyses are carried out using the energy method.The influences of prestrain biaxiality,temperature,and ply angle on the buckling wavelength,critical buckling prestrain,and buckling amplitude are calculated.The results demonstrate that the critical buckling wavelength of the SMPC laminate is independent of the prestrain,while the amplitude is almost independent of temperature.In addition,the optimal fiber stacking configuration with the maximum critical buckling prestrains of inhomogeneous SMPC laminates is determined by a genetic algorithm.
文摘Snap-acting two way shape memory device can be obtained by using the design proposed by authors.Some essential parameters which characterize the properties of device have been pro- posed also in this paper.And the principle and method according to which a practical snap-acting device can be designed have been described.
文摘The snap-action behavior of a Ni-Ti alloy disc which is controlled by combination of a nonlinear stress field and temperature has been studied.After treatment for two-way shape memory,all shape memory strain of snap-action finishes abruptly at a certain temperature within an interval of less than 1 ms.The results of resistance measurement and in-situ X-ray diffraction indicate that the snap-action strain is mainly resulted from the snap-action β (?)R transformation.
基金financially supported by the National Natural Science Foundation of China(No.51371016)the Fundamental Research Funds for the Central Universities(Nos.YWF-16-BJ-J-49 and YWF-17-BJ-J-23)。
文摘The two-way shape memory effect in a Ti-18.5Zr-10Nb-3.5Ta high-temperature shape memory alloy was investigated.X-ray diffraction measurem ent shows that the alloy is composed of orthorhombicα"-martensite.ωphase is not found in Ti-18.5Zr-10Nb-3.5Ta alloy due to the suppressing effect of Ta element.Theα"-martensite laths are found in the transmission electron microscope observation;after the bending deformation,there appear a lot of dislocations.The alloy exhibits a shape memory strain of 3.8%aud a high reverse martensite transformation start temperature of 464 K.The maximum two-way shape memory strain of 1.2%is obtained in the alloy with the prebending training strain of 10%.The mechanism can be ascribed to the effect of internal stress field caused by dislocations.