期刊文献+
共找到1,054篇文章
< 1 2 53 >
每页显示 20 50 100
Integrated classification method of tight sandstone reservoir based on principal component analysise simulated annealing genetic algorithmefuzzy cluster means
1
作者 Bo-Han Wu Ran-Hong Xie +3 位作者 Li-Zhi Xiao Jiang-Feng Guo Guo-Wen Jin Jian-Wei Fu 《Petroleum Science》 SCIE EI CSCD 2023年第5期2747-2758,共12页
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig... In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method. 展开更多
关键词 Tight sandstone Integrated reservoir classification principal component analysis Simulated annealing genetic algorithm Fuzzy cluster means
下载PDF
Polarimetric Meteorological Satellite Data Processing Software Classification Based on Principal Component Analysis and Improved K-Means Algorithm 被引量:1
2
作者 Manyun Lin Xiangang Zhao +3 位作者 Cunqun Fan Lizi Xie Lan Wei Peng Guo 《Journal of Geoscience and Environment Protection》 2017年第7期39-48,共10页
With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In th... With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Firstly, principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Then the modified K-means algorithm was used to classify the meteorological data processing software. Finally, it combined with the results of principal component analysis to explain the significance of various types of integrated software operating characteristics. And it is used as the basis for optimizing the allocation of software hardware resources and improving the efficiency of software operation. 展开更多
关键词 principal component analysis Improved K-Mean algorithm METEOROLOGICAL Data Processing FEATURE analysis SIMILARITY algorithm
下载PDF
Improved Face Recognition Method Using Genetic Principal Component Analysis 被引量:2
3
作者 E.Gomathi K.Baskaran 《Journal of Electronic Science and Technology》 CAS 2010年第4期372-378,共7页
An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigen... An improved face recognition method is proposed based on principal component analysis (PCA) compounded with genetic algorithm (GA), named as genetic based principal component analysis (GPCA). Initially the eigenspace is created with eigenvalues and eigenvectors. From this space, the eigenfaces are constructed, and the most relevant eigenfaees have been selected using GPCA. With these eigenfaees, the input images are classified based on Euclidian distance. The proposed method was tested on ORL (Olivetti Research Labs) face database. Experimental results on this database demonstrate that the effectiveness of the proposed method for face recognition has less misclassification in comparison with previous methods. 展开更多
关键词 EIGENFACES EIGENVECTORS face recognition genetic algorithm principal component analysis.
下载PDF
Support vector classifier based on principal component analysis 被引量:1
4
作者 Zheng Chunhong Jiao Licheng Li Yongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期184-190,共7页
Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dim... Support vector classifier (SVC) has the superior advantages for small sample learning problems with high dimensions, with especially better generalization ability. However there is some redundancy among the high dimensions of the original samples and the main features of the samples may be picked up first to improve the performance of SVC. A principal component analysis (PCA) is employed to reduce the feature dimensions of the original samples and the pre-selected main features efficiently, and an SVC is constructed in the selected feature space to improve the learning speed and identification rate of SVC. Furthermore, a heuristic genetic algorithm-based automatic model selection is proposed to determine the hyperparameters of SVC to evaluate the performance of the learning machines. Experiments performed on the Heart and Adult benchmark data sets demonstrate that the proposed PCA-based SVC not only reduces the test time drastically, but also improves the identify rates effectively. 展开更多
关键词 support vector classifier principal component analysis feature selection genetic algorithms
下载PDF
Coal and gas outburst prediction model based on principal component analysis and improved support vector machine 被引量:1
5
作者 Chaojun Fan Xinfeng Lai +1 位作者 Haiou Wen Lei Yang 《Geohazard Mechanics》 2023年第4期319-324,共6页
In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data ... In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data samples,extract the principal components of the samples,use firefly algorithm(FA)to improve the support vector machine model,and compare and analyze the prediction results of PCA-FA-SVM model with BP model,FA-SVM model,FA-BP model and SVM model.Accuracy rate,recall rate,Macro-F1 and model prediction time were used as evaluation indexes.The results show that:Principal component analysis improves the prediction efficiency and accuracy of FA-SVM model.The accuracy rate of PCA-FA-SVM model predicting coal and gas outburst risk is 0.962,recall rate is 0.955,Macro-F1 is 0.957,and model prediction time is 0.312s.Compared with other models,The comprehensive performance of PCA-FA-SVM model is better. 展开更多
关键词 Coal and gas outburst Risk prediction principal component analysis(PCA) Firefly algorithm(FA) Support vector machine(SVM)
原文传递
Generalized two-dimensional correlation near-infrared spectroscopy and principal component analysis of the structures of methanol and ethanol 被引量:5
6
作者 Liu Hao Xu JianPing +1 位作者 Qu LingBo Xiang BingRen 《Science China Chemistry》 SCIE EI CAS 2010年第5期1154-1159,共6页
Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal c... Liquid state methanol and ethanol under different temperatures have been investigated by FT-NIR(Fourier transform nearinfrared) spectroscopy,generalized two-dimensional(2D) correlation spectroscopy,and PCA(principal component analysis) . First,the FT-NIR spectra were measured over a temperature range of 30-64(or 30-71) °C,and then the 2D correlation spectra were computed.Combining near-infrared spectroscopy,generalized 2D correlation spectroscopy,and references,we analyzed the molecular structures(especially the hydrogen bond) of methanol and ethanol,and performed the NIR band assignments. The PCA method was employed to verify the results of the 2D analysis.This study will be helpful to the understanding of these reagents. 展开更多
关键词 NIR(near-infrared) two-dimensional (2D) CORRELATION spectroscopy principal component analysis (PCA) METHANOL ETHANOL
原文传递
Kernel Factor Analysis Algorithm with Varimax
7
作者 夏国恩 金炜东 张葛祥 《Journal of Southwest Jiaotong University(English Edition)》 2006年第4期394-399,共6页
Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle com... Kernal factor analysis (KFA) with vafimax was proposed by using Mercer kernel function which can map the data in the original space to a high-dimensional feature space, and was compared with the kernel principle component analysis (KPCA). The results show that the best error rate in handwritten digit recognition by kernel factor analysis with vadmax (4.2%) was superior to KPCA (4.4%). The KFA with varimax could more accurately image handwritten digit recognition. 展开更多
关键词 Kernel factor analysis Kernel principal component analysis Support vector machine Varimax algorithm Handwritten digit recognition
下载PDF
Convergence of algorithms used for principal component analysis 被引量:1
8
作者 张俊华 陈翰馥 《Science China(Technological Sciences)》 SCIE EI CAS 1997年第6期597-604,共8页
The convergence of algorithms used for principal component analysis is analyzed. The algorithms are proved to converge to eigenvectors and eigenvalues of a matrix A which is the expectation of observed random samples.... The convergence of algorithms used for principal component analysis is analyzed. The algorithms are proved to converge to eigenvectors and eigenvalues of a matrix A which is the expectation of observed random samples. The conditions required here are considerably weaker than those used in previous work. 展开更多
关键词 principal component analysis STOCHASTIC APPROXIMATION algorithmS convergence.
原文传递
Aerodynamic multi-objective integrated optimization based on principal component analysis 被引量:11
9
作者 Jiangtao HUANG Zhu ZHOU +2 位作者 Zhenghong GAO Miao ZHANG Lei YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1336-1348,共13页
Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which,... Based on improved multi-objective particle swarm optimization(MOPSO) algorithm with principal component analysis(PCA) methodology, an efficient high-dimension multiobjective optimization method is proposed, which, as the purpose of this paper, aims to improve the convergence of Pareto front in multi-objective optimization design. The mathematical efficiency,the physical reasonableness and the reliability in dealing with redundant objectives of PCA are verified by typical DTLZ5 test function and multi-objective correlation analysis of supercritical airfoil,and the proposed method is integrated into aircraft multi-disciplinary design(AMDEsign) platform, which contains aerodynamics, stealth and structure weight analysis and optimization module.Then the proposed method is used for the multi-point integrated aerodynamic optimization of a wide-body passenger aircraft, in which the redundant objectives identified by PCA are transformed to optimization constraints, and several design methods are compared. The design results illustrate that the strategy used in this paper is sufficient and multi-point design requirements of the passenger aircraft are reached. The visualization level of non-dominant Pareto set is improved by effectively reducing the dimension without losing the primary feature of the problem. 展开更多
关键词 Aerodynamic optimization Dimensional reduction Improved multi-objective particle swarm optimization(MOPSO) algorithm Multi-objective principal component analysis
原文传递
Principal component cluster analysis of ECG time series based on Lyapunov exponent spectrum 被引量:4
10
作者 WANGNai RUANJiong 《Chinese Science Bulletin》 SCIE EI CAS 2004年第18期1980-1985,共6页
In this paper we propose an approach of prin-cipal component cluster analysis based on Lyapunov expo-nent spectrum (LES) to analyze the ECG time series. Analy-sis results of 22 sample-files of ECG from the MIT-BIH da-... In this paper we propose an approach of prin-cipal component cluster analysis based on Lyapunov expo-nent spectrum (LES) to analyze the ECG time series. Analy-sis results of 22 sample-files of ECG from the MIT-BIH da-tabase confirmed the validity of our approach. Another technique named improved teacher selecting student (TSS) algorithm is presented to analyze unknown samples by means of some known ones, which is of better accuracy. This technique combines the advantages of both statistical and nonlinear dynamical methods and is shown to be significant to the analysis of nonlinear ECG time series. 展开更多
关键词 ECG 非线性时间级数分析 李雅普诺夫指数光谱 TSS算法 主要成份聚合分析
原文传递
Research on Application of Enhanced Neural Networks in Software Risk Analysis
11
作者 Zhenbang Rong Juhua Chen +1 位作者 Mei Liu Yong Hu 《南昌工程学院学报》 CAS 2006年第2期112-116,121,共6页
This paper puts forward a risk analysis model for software projects using enranced neural networks.The data for analysis are acquired through questionnaires from real software projects. To solve the multicollinearity ... This paper puts forward a risk analysis model for software projects using enranced neural networks.The data for analysis are acquired through questionnaires from real software projects. To solve the multicollinearity in software risks, the method of principal components analysis is adopted in the model to enhance network stability.To solve uncertainty of the neural networks structure and the uncertainty of the initial weights, genetic algorithms is employed.The experimental result reveals that the precision of software risk analysis can be improved by using the erhanced neural networks model. 展开更多
关键词 software risk analysis principal components analysis back propagation neural networks genetic algorithms
下载PDF
Device Anomaly Detection Algorithm Based on Enhanced Long Short-Term Memory Network
12
作者 罗辛 陈静 +1 位作者 袁德鑫 杨涛 《Journal of Donghua University(English Edition)》 CAS 2023年第5期548-559,共12页
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-... The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment. 展开更多
关键词 anomaly detection production equipment genetic algorithm(GA) long short-term memory(LSTM) principal component analysis(PCA)
下载PDF
多策略改进黏菌算法阶段优化HSVM变压器故障辨识 被引量:2
13
作者 谢国民 林忠宝 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期67-76,共10页
为解决变压器故障诊断精度较低的问题,提出了一种多策略改进黏菌算法(ISMA)阶段优化混合核支持向量机(HSVM)的变压器故障诊断新方法。首先,利用主成分分析(PCA)来消除变量之间的信息冗余并降低数据集维度。其次,引入黏菌算法(SMA),并结... 为解决变压器故障诊断精度较低的问题,提出了一种多策略改进黏菌算法(ISMA)阶段优化混合核支持向量机(HSVM)的变压器故障诊断新方法。首先,利用主成分分析(PCA)来消除变量之间的信息冗余并降低数据集维度。其次,引入黏菌算法(SMA),并结合Logistic混沌映射、二次插值、自适应权重多策略改进SMA,以提高SMA算法收敛速度和局部搜索能力;然后,与原始SMA、WHO和GWO算法进行寻优测试,对比验证改进后SMA算法的优越性;最后,使用改进SMA算法分阶段对混合核支持向量机参数寻优,构建ISMA-HSVM变压器故障诊断模型。将降维后的特征数据输入HSVM模型与BPPN、ELM和SVM进行比较,HSVM模型的诊断准确性分别提高了5.55%、8.89%、5.55%。使用ISMA优化HSVM模型参数,与WHO、GWO、SMA算法优化效果比较,结果准确性提高了13.33%、12.22%、5.55%。其中,ISMA-HSVM模型的诊断精度为93.33%。实验结果表明,所提模型有效提升故障诊断分类性能,且具有较高的故障诊断精度。 展开更多
关键词 故障诊断 主成分分析 黏菌算法 混合核支持向量机
下载PDF
基于机器学习的茶树DNA聚类算法
14
作者 杨小平 倪萍 +4 位作者 诸葛天秋 罗跃新 郭春雨 庞月兰 吴雨婷 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第2期386-399,共14页
为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据... 为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据累计方差贡献率的占比大于85%的标准确定降维主元个数对KPCA进行降维改进并采用k-means++算法对降维后数据聚类,通过CH(Calinski-Harabaze Index)指标和响应时间分析聚类结果。结果表明:在单独聚类、KPCA聚类、改进PCA聚类、改进KPCA聚类4种处理方式中,改进KPCA-k-means++算法在不同处理方式和不同样本数的对比下,CH指标均为最高,与未改进时相比平均高出33%。在响应时间方面,改进KPCA-k-means++算法与同样改进PCA-k-means++算法在不同聚类数和样本数的对比下响应时间均较短。改进KPCA-k-means++算法能够保证对于茶树的基因序列的聚类准确率和聚类速度,表现出极好的聚类稳定性。 展开更多
关键词 核主成分分析 累计方差贡献率 K均值聚类算法 基因聚类
下载PDF
基于IWOA-ELM的模拟电路故障诊断方法
15
作者 游达章 刘姗 +1 位作者 张业鹏 李存靖 《仪表技术与传感器》 CSCD 北大核心 2024年第2期104-110,共7页
针对模拟电路故障诊断中非线性和高维度输出信号带来的诊断困难问题,提出一种基于改进鲸鱼算法(IWOA)优化极限学习机(ELM)的模拟电路故障诊断方法。首先,采用主成分分析(PCA)法对初始故障电路特征进行降维;其次,在鲸鱼算法的基础上引入T... 针对模拟电路故障诊断中非线性和高维度输出信号带来的诊断困难问题,提出一种基于改进鲸鱼算法(IWOA)优化极限学习机(ELM)的模拟电路故障诊断方法。首先,采用主成分分析(PCA)法对初始故障电路特征进行降维;其次,在鲸鱼算法的基础上引入Tent映射来初始化种群,并且加入了非线性时变因子、自适应权重以及随机差分变异策略;再利用改进后的鲸鱼算法对ELM进行优化;最后将降维后的故障特征向量输入ELM中得到故障诊断结果。通过Sallen-Key带通滤波器电路以及CSTV滤波器电路仿真测试实例表明:IWOA优化ELM的故障诊断方法具有更优的故障诊断性能,故障诊断准确率高达99.41%。 展开更多
关键词 模拟电路 故障诊断 特征提取 主成分分析 极限学习机 鲸鱼算法
下载PDF
基于主成分自组织神经网络法的测井曲线分层技术
16
作者 张强 胡志伟 +1 位作者 王毛毛 周成号 《地质与勘探》 CAS CSCD 北大核心 2024年第5期1013-1020,共8页
在砂岩型铀矿找矿工作中,提高测井岩性分层效率和精度至关重要。为提高砂岩型铀矿岩性分层效果,本文采用主成分分析法对多个测井曲线进行降维处理,将主成分分析法的第一主成分、第二主成分、第三主成分作为自组织神经网络的样本数据,进... 在砂岩型铀矿找矿工作中,提高测井岩性分层效率和精度至关重要。为提高砂岩型铀矿岩性分层效果,本文采用主成分分析法对多个测井曲线进行降维处理,将主成分分析法的第一主成分、第二主成分、第三主成分作为自组织神经网络的样本数据,进行自组织神经网络训练,将训练好的网络模型用于砂岩型铀矿岩性的自动化分层。实验结果显示:主成分自组织神经网络法岩性分层精度可达到85%以上,高于传统自组织神经网络算法78%的分层精度,具有更好的测井岩性分层效果。因此,主成分自组织神经网算法的岩性分层方法有效减少了输入样本的种类,简化了自组织神经网络结构,其自动化分层效果要优于传统的自组织神经网络算法。本文的研究结果表明,主成分自组织神经网算法在砂岩型铀矿领域岩性识别工作中具有较好的应用效果。 展开更多
关键词 测井曲线 自组织神经网络算法 主成分分析法 岩性分层 砂岩型铀矿
下载PDF
基于主成分分析和VU分解法的两步随机相移算法
17
作者 张宇 《红外与激光工程》 EI CSCD 北大核心 2024年第2期227-237,共11页
为了平衡相位计算的精度和速度,大量的两步随机相移算法发展起来。提出了一种基于主成分分析和VU分解法的快速、高精度两步随机相移算法。首先,采用两步主成分分析法对经过滤波的两幅相移干涉图进行计算求出迭代初始相位;然后,利用没有... 为了平衡相位计算的精度和速度,大量的两步随机相移算法发展起来。提出了一种基于主成分分析和VU分解法的快速、高精度两步随机相移算法。首先,采用两步主成分分析法对经过滤波的两幅相移干涉图进行计算求出迭代初始相位;然后,利用没有滤波的两幅相移干涉图进行VU分解、迭代求出最终相位。通过模拟和实验结果对比表明:与四种性能良好的两步随机相移算法相比,对于不同的条纹类型、噪声、相移值及条纹数量,提出的算法综合性能最好,其精度最高,有效相移范围和有效条纹数量范围最大,当干涉图像素数为401 pixel×401 pixel时,提出的算法仅比格兰-施密特正交化法和两步主成分分析法多花费0.035 s。在理想情况下,提出的算法可以得到完全正确的结果。如果需要得到较高精度,最好能够提前抑制噪声,同时设置相移值远离0和π,条纹数量大于2。主成分分析和VU分解法无需滤波,花费近似非迭代算法的时间获得迭代算法的精度,其打破了迭代算法花费时间较多的限制,适合高精度光学在线检测,有广泛的发展前景。 展开更多
关键词 测量 干涉 相移算法 迭代算法 主成分分析
下载PDF
基于声音特征优化和改进支持向量机的鸟声识别
18
作者 陈晓 曾昭优 《测控技术》 2024年第6期21-25,32,共6页
为了在低参数量下提高鸟鸣声的识别准确率,提出了一种新的鸟声识别方法,包括鸟声信号特征优化和乌鸦搜索-支持向量机(Support Vector Machine,SVM)分类识别。该方法首先采用主成分分析法对从鸟声中提取的梅尔频率倒谱系数(Mel Frequency... 为了在低参数量下提高鸟鸣声的识别准确率,提出了一种新的鸟声识别方法,包括鸟声信号特征优化和乌鸦搜索-支持向量机(Support Vector Machine,SVM)分类识别。该方法首先采用主成分分析法对从鸟声中提取的梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)和翻转梅尔频率倒谱系数进行选择,得到优化后的声音特征参数并将其作为鸟声识别算法的输入;然后利用乌鸦搜索算法对SVM的核参数和损失值进行选优,得到改进的SVM网络用于鸟声分类识别。试验结果表明,该方法对5种鸟声识别的准确率为92.2%,声音特征维数在16时可以得到最好的识别效果。该方法为野外鸟声自动识别提供了一种可行的方式。 展开更多
关键词 声音识别 鸟声识别 主成分分析 支持向量机 乌鸦搜索算法
下载PDF
基于多特征提取和麻雀搜索算法优化XGBoost的变压器绕组松动诊断方法
19
作者 马宏忠 肖雨松 +1 位作者 颜锦 孙永腾 《电机与控制学报》 EI CSCD 北大核心 2024年第6期87-97,共11页
针对使用单一特征量诊断变压器绕组松动,在不同负载条件下存在交叠和抗干扰能力不足的问题,提出一种基于核主成分分析(KPCA)和改进麻雀搜索算法(SSA)优化极端梯度提升(XGBoost)的变压器绕组松动振动诊断方法。首先,从时域、频域和熵值3... 针对使用单一特征量诊断变压器绕组松动,在不同负载条件下存在交叠和抗干扰能力不足的问题,提出一种基于核主成分分析(KPCA)和改进麻雀搜索算法(SSA)优化极端梯度提升(XGBoost)的变压器绕组松动振动诊断方法。首先,从时域、频域和熵值3个维度提取适用于变压器多传感器振动信号的多种特征量;其次,通过网格搜索优化的KPCA对特征量进行降维;最后,构建基于XGBoost的故障诊断模型,并采用改进麻雀搜索算法调参,实现不同电流大小下变压器绕组松动故障准确识别。以某110 kV变压器为对象进行实验验证,诊断结果表明,所提取的特征量能够准确反映故障特征,抗干扰能力更强,诊断模型故障诊断准确率为99.00%,相比于其他诊断算法准确率和稳定性更高,在不同负载情况下均有良好的识别效果。 展开更多
关键词 变压器振动 绕组松动 核主成分分析 极端梯度提升 麻雀搜索算法 故障诊断
下载PDF
基于模式识别技术的光电探测器故障辨识研究
20
作者 祝加雄 戴敏 《激光杂志》 CAS 北大核心 2024年第2期214-218,共5页
当前光电探测器故障辨识错误率高,为提升光电探测器故障辨识效果,设计了基于模式识别技术的光电探测器故障辨识方法。首先采集光电探测器状态信号,并从光电探测器状态信号中提取特征,然后利用主成分分析算法对特征进行降维处理,得到最... 当前光电探测器故障辨识错误率高,为提升光电探测器故障辨识效果,设计了基于模式识别技术的光电探测器故障辨识方法。首先采集光电探测器状态信号,并从光电探测器状态信号中提取特征,然后利用主成分分析算法对特征进行降维处理,得到最优光电探测器状态辨识特征,最后将光电探测器状态特征作为支持向量机的输入,光电探测器状态作为支持向量机输出,通过支持向量机学习设计光电探测器状态辨识器,实验结果表明,本方法可以有效辨识光电探测器辨识故障,光电探测器故障辨识正确率超过了90%,光电探测器故障辨识时间控制在20 ms以内,为光电探测器状态分析提供了理论依据。 展开更多
关键词 光电探测器 故障辨识 降维处理 辨识时间 主成分分析算法
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部