The coupled models of both the Global Ocean-Atmosphere-Land System (GOALS) and the Atmosphere- Vegetation Interaction Model (GOALS-AVIM) are used to study the main characteristics of interannual variations. The si...The coupled models of both the Global Ocean-Atmosphere-Land System (GOALS) and the Atmosphere- Vegetation Interaction Model (GOALS-AVIM) are used to study the main characteristics of interannual variations. The simulated results are also used to investigate some significant interannual variability and correlation analysis of the atmospheric circulation and terrestrial ecosystem. By comparing the simulations of the climate model GOALS-AVIM and GOALS, it is known that the simulated results of the interannual variations of the spatial and temporal distributions of the surface air temperatures and precipitation are generally improved by using AVIM in GOALS-AVIM. The interannual variation displays some distinct characteristics of the geographical distribution. Both the Net Primary Production (NPP) and the Leap Area Index (LAI) have quasi 1-2-year cycles. Meanwhile, precipitation and the surface temperatures have 2-4- year cycles. Conditions when the spectrum density values of GOALS are less than those of GOALS-AVIM, tell us that the model coupled with AVIM enhances the simulative capability for interannual variability and makes the annual cycle variability more apparent. Using Singular Value Decomposition (SVD) analysis, the relationship between the ecosystem and the atmospheric circulation in East Asia is explored. The result shows that the strengthening and weakening of the East Asian monsoon, characterized by the geopotential heights at 500 hPa and the wind fields at 850 hPa, correspond to the spatiotemporal pattern of the NPP. The correlation between NPP and the air temperature, precipitation and solar radiation are different in interannual variability because of the variation in vegetation types.展开更多
In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-S...In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-Shafer(D-S) evidence theory are proposed at the relay node.Instead of traditional linear detection,the first proposed MIMO-DS NC scheme adopts D-S evidence theory to detect the signals of each source node before mapping them into network-coded signal.Moreover,different from traditional physical-layer network coding(PNC) based on virtual MIMO model,the further proposed MIMO-DS PNC comes from the vector space perspective and combines PNC mapping with D-S theory to obtain network-coded signal without estimating each source node signal.D-S theory can appropriately characterize uncertainty and make full use of multiple evidence source information by Dempster's combination rule to obtain reliable decisions.In the broadcast(BC) phase,the space-time coding(STC) and antenna selection(AS) schemes are adopted to achieve transmit diversity.Simulation results reveal that the STC and AS schemes both achieve full transmit diversity in the BC phase and the proposed MIMO-DS NC/PNC schemes obtain better end-to-end BER performance and throughputs compared with traditional schemes with a little complexity increasing and no matter which scheme is adopted in the BC phase,MIMO-DS PNC always achieves full end-to-end diversity gain as MIMO-ML NC but with a lower complexity and its throughput approaches the throughput of MIMO-ML NC in high SNR regime.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. IAP07114)"Interaction of Indian-Pacific Ocean and the significance of influence to the South China Sea circumfluence" (GrantNo. KZCX2-YW-214)the project of the National Natural Science Foundation of China (Grant Nos. 40605025,40675049, and 40730106)
文摘The coupled models of both the Global Ocean-Atmosphere-Land System (GOALS) and the Atmosphere- Vegetation Interaction Model (GOALS-AVIM) are used to study the main characteristics of interannual variations. The simulated results are also used to investigate some significant interannual variability and correlation analysis of the atmospheric circulation and terrestrial ecosystem. By comparing the simulations of the climate model GOALS-AVIM and GOALS, it is known that the simulated results of the interannual variations of the spatial and temporal distributions of the surface air temperatures and precipitation are generally improved by using AVIM in GOALS-AVIM. The interannual variation displays some distinct characteristics of the geographical distribution. Both the Net Primary Production (NPP) and the Leap Area Index (LAI) have quasi 1-2-year cycles. Meanwhile, precipitation and the surface temperatures have 2-4- year cycles. Conditions when the spectrum density values of GOALS are less than those of GOALS-AVIM, tell us that the model coupled with AVIM enhances the simulative capability for interannual variability and makes the annual cycle variability more apparent. Using Singular Value Decomposition (SVD) analysis, the relationship between the ecosystem and the atmospheric circulation in East Asia is explored. The result shows that the strengthening and weakening of the East Asian monsoon, characterized by the geopotential heights at 500 hPa and the wind fields at 850 hPa, correspond to the spatiotemporal pattern of the NPP. The correlation between NPP and the air temperature, precipitation and solar radiation are different in interannual variability because of the variation in vegetation types.
基金jointly supported by the National Natural Science Foundation of China under Grant 61201198 and 61372089the Beijing Natural Science Foundation under Grant 4132015,4132007and 4132019
文摘In this paper,a two-way relay system which achieves bi-directional communication via a multiple-antenna relay in two time slots is studied.In the multiple access(MA) phase,the novel receive schemes based on Dempster-Shafer(D-S) evidence theory are proposed at the relay node.Instead of traditional linear detection,the first proposed MIMO-DS NC scheme adopts D-S evidence theory to detect the signals of each source node before mapping them into network-coded signal.Moreover,different from traditional physical-layer network coding(PNC) based on virtual MIMO model,the further proposed MIMO-DS PNC comes from the vector space perspective and combines PNC mapping with D-S theory to obtain network-coded signal without estimating each source node signal.D-S theory can appropriately characterize uncertainty and make full use of multiple evidence source information by Dempster's combination rule to obtain reliable decisions.In the broadcast(BC) phase,the space-time coding(STC) and antenna selection(AS) schemes are adopted to achieve transmit diversity.Simulation results reveal that the STC and AS schemes both achieve full transmit diversity in the BC phase and the proposed MIMO-DS NC/PNC schemes obtain better end-to-end BER performance and throughputs compared with traditional schemes with a little complexity increasing and no matter which scheme is adopted in the BC phase,MIMO-DS PNC always achieves full end-to-end diversity gain as MIMO-ML NC but with a lower complexity and its throughput approaches the throughput of MIMO-ML NC in high SNR regime.