In present paper, we obtain the inverse moment estimations of parameters of the Birnbaum-Saunders fatigue life distribution based on Type-Ⅱ bilateral censored samples and multiply Type-Ⅱ censored sample. In this pap...In present paper, we obtain the inverse moment estimations of parameters of the Birnbaum-Saunders fatigue life distribution based on Type-Ⅱ bilateral censored samples and multiply Type-Ⅱ censored sample. In this paper, we also get the interval estimations of the scale parameters.展开更多
In present paper, we derive the quasi-least squares estimation(QLSE) and approximate maximum likelihood estimation(AMLE) for the Birnbaum-Saunders fatigue life distribution under multiply Type-Ⅱcensoring. Furthermore...In present paper, we derive the quasi-least squares estimation(QLSE) and approximate maximum likelihood estimation(AMLE) for the Birnbaum-Saunders fatigue life distribution under multiply Type-Ⅱcensoring. Furthermore, we get the variance and covariance of the approximate maximum likelihood estimation.展开更多
In order to synthesize high-quality type-Ⅱa large diamond, the selection of catalyst is very important, in addition to the nitrogen getter. In this paper, type-IIa large diamonds are grown under high pressure and hig...In order to synthesize high-quality type-Ⅱa large diamond, the selection of catalyst is very important, in addition to the nitrogen getter. In this paper, type-IIa large diamonds are grown under high pressure and high temperature(HPHT) by using the temperature gradient method(TGM), with adopting Ti/Cu as the nitrogen getter in Ni70Mn25Co5(abbreviated as NiMnCo) or Fe(55)Ni(29)Co(16)(abbreviated FeNiCo) catalyst. The values of nitrogen concentration(Nc) in both synthesized high-quality diamonds are less than 1 ppm, when Ti/Cu(1.6 wt%) is added in the FeNiCo or Ti/Cu(1.8 wt%) is added in the NiMnCo. The difference in solubility of nitrogen between both catalysts at HPHT is the basic reason for the different effect of Ti/Cu on eliminating nitrogen. The nitrogen-removal efficiency of Ti/Cu in the NiMnCo catalyst is less than in the FeNiCo catalyst. Additionally, a high-quality type-Ⅱa large diamond size of 5.0 mm is obtained by reducing the growth rate and keeping the nitrogen concentration of the diamond to be less than 1 ppm, when Ti/Cu(1.6 wt%) is added in the FeNiCo catalyst.展开更多
We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is ...We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is 120 periods InAs(8 ML)/GaSb(6 ML)with different thicknesses of InSb interface grown by molecular beam epitaxy(MBE).The highresolution x-ray diffraction(XRD)curves display sharp satellite peaks,and the narrow full width at half maximum(FWHM)of the 0th is only 30-39 arcsec.From high-resolution cross-sectional transmission electron microscopy(HRTEM)characterization,the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished.As the InSb interface thickness increases,the compressive strain increases,and the surface“bright spots”appear to be more apparent from the atomic force microscopy(AFM)results.Also,photoluminescence(PL)measurements verify that,with the increase in the strain,the bandgap of the superlattice narrows.By optimizing the InSb interface,a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78μm,which can be used for mid-wave infrared(MWIR)detection.展开更多
Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facili...Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells.This paper reviews the type-Ⅱ heterojunction solar cells based on core/shell nanowire arrays,and specifically focuses on the progress of theoretical design and fabrication of type-Ⅱ Zn O/Zn Se core/shell nanowire-based solar cells.A strong photoresponse associated with the type-Ⅱ interfacial transition exhibits a threshold of 1.6 e V,which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-Ⅱ heterojunction solar cells using wide bandgap semiconductors.Future prospects in this area are also outlooked.展开更多
In this work,a set of novel Cu2ZnSnS4/Bi2WO6(CZTS/BWO)two-dimensional(2 D)/two-dimensional(2 D)type-Ⅱheterojunctions with different CZTS weight ratios(1%,2%,and 5%)were successfully synthesized via a brief secondary ...In this work,a set of novel Cu2ZnSnS4/Bi2WO6(CZTS/BWO)two-dimensional(2 D)/two-dimensional(2 D)type-Ⅱheterojunctions with different CZTS weight ratios(1%,2%,and 5%)were successfully synthesized via a brief secondary solvothermal process.The successful formation of the heterojunctions was affirmed by characterization methods such as X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy.The photocatalytic activity results showed that the prepared CZTS/BWO heterojunctions had excellent photocatalytic behaviors for organic degradation,especially when the mass fraction of CZTS with respect to BWO in the composite was 2%.Moreover,the addition of hydrogen peroxide(H2O2)could further improve the dye and antibiotic degradation efficiencies.The reinforced photocatalytic and photo-Fenton degradation performance were primarily attributable to the introduction of BWO,which afforded increased active sites,expanded the solar spectral response range,and accelerated the cycle of Cu(Ⅱ)/Cu(Ⅰ);after four cycling times,its catalytic activity did not decrease significantly.In addition,reasonable hypotheses of the photocatalytic and photo-Fenton catalytic mechanisms were formulated.This study is expected to provide a visual approach for designing a novel photo-Fenton catalyst to jointly utilize the photocatalytic and Fenton activities,which can be better applied to the purification of residual organics in wastewater.展开更多
A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15...A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15.2 μm, at 77 K.A 320×256 VLWIR focal plane array with this design was fabricated and characterized. The peak quantum efficiency without an antireflective coating was 25.74% at the reverse bias voltage of-20 mV, yielding a peak specific detectivity of 5.89×10^10cm·Hz^1/2·W^-1. The operability and the uniformity of response were 89% and 83.17%. The noise-equivalent temperature difference at 65 K exhibited a minimum at 21.4 mK, corresponding to an average value of 56.3 mK.展开更多
This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units re...This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units removed at each failure time follows the binomial distribution.The maximum likelihood estimation and the Bayesian estimation are derived.In the meanwhile,through a great quantity of Monte Carlo simulation experiments we have studied different hyperparameters as well as symmetric and asymmetric loss functions in the Bayesian estimation procedure.A real industrial case is presented to justify and illustrate the proposed methods.We also investigate the expected experimentation time and discuss the influence of the parameters on the termination point to complete the censoring test.展开更多
TiO2 nanoparticles were prepared using the hydrothermal method and modified with CgN to syn-thesize a Type-Ⅱheterojunction semiconductor photocatalyst,TiO2-C;Na.In addition,a carbon layerwas coated onto the TiO2 nano...TiO2 nanoparticles were prepared using the hydrothermal method and modified with CgN to syn-thesize a Type-Ⅱheterojunction semiconductor photocatalyst,TiO2-C;Na.In addition,a carbon layerwas coated onto the TiO2 nanoparticles and the obtained material was uniformly covered on thesurface of CaNa to form an all-solid-state Z-scheme semiconductor photocatalyst,TiO2-C-C3N4,Through characterization by XRD,XPS,SEM,TEM,BET,photoelectrochemical experiments,UV-visible diffuse reflection,and PL spectroscopy,the charge transfer mechanism and band gappositions for the composite photocatalysts were analyzed.The Type-Ⅱand all-solid-state Z-schemeheterojunction structures were compared.By combining microscopic internal mechanisms withmacroscopic experimental phenomena,the relationship between performance and structure wasverified.Experimental methods were used to explore the adaptation degree of different photocata-lytic mechanisms using the same degradation system.This study highlights effective photocatalystdesign to meet the requirements for specific degradation conditions.展开更多
By optimizing theⅤ/Ⅲbeam-equivalent pressure ratio,a high-quality InAs/GaSb type-Ⅱsuperlattice material for the long-wavelength infrared(LWIR)range is achieved by molecular beam epitaxy(MBE).High-resolution x-ray d...By optimizing theⅤ/Ⅲbeam-equivalent pressure ratio,a high-quality InAs/GaSb type-Ⅱsuperlattice material for the long-wavelength infrared(LWIR)range is achieved by molecular beam epitaxy(MBE).High-resolution x-ray diffraction(HRXRD),atomic force microscopy(AFM),and Fourier transform infrared(FTIR)spectrometer are used to characterize the material growth quality.The results show that the full width at half maximum(FWHM)of the superlattice zero-order diffraction peak,the mismatching of the superlattice zero-order diffraction peak between the substrate diffraction peaks,and the surface roughness get the best results when the beam-equivalent pressure(BEP)ratio reaches the optimal value,which are 28 arcsec,13 arcsec,and 1.63?,respectively.The intensity of the zero-order diffraction peak is strongest at the optimal value.The relative spectral response of the LWIR detector shows that it exhibits a 100%cut-off wavelength of 12.6μm at 77 K.High-quality epitaxial materials have laid a good foundation for preparing high-performance LWIR detector.展开更多
The optical properties of the type-Ⅱ lineup InxAl1-xN-Al0.59Ga0.41N/Al0.74Ga0.26N quantum well(QW) structures with different In contents are investigated by using the six-by-six K-P method.The type-Ⅱ lineup structur...The optical properties of the type-Ⅱ lineup InxAl1-xN-Al0.59Ga0.41N/Al0.74Ga0.26N quantum well(QW) structures with different In contents are investigated by using the six-by-six K-P method.The type-Ⅱ lineup structures exhibit the larger product of Fermi-Dirac distribution functions of electron fc^n and hole(1-fv^Um) and the approximately equal transverse electric(TE) polarization optical matrix elements(|Mx|^2) for the c1-v1 transition.As a result, the peak intensity in the TE polarization spontaneous emission spectrum is improved by 47.45%-53.84% as compared to that of the conventional AlGaN QW structure.In addition, the type-Ⅱ QW structure with x^0.17 has the largest TE mode peak intensity in the investigated In-content range of 0.13-0.23.It can be attributed to the combined effect of |Mx|^2 and fc^n(1-fv^Um) for the c1-v1, c1-v2, and c1-v3 transitions.展开更多
Topological Dirac semimetals(DSMs) present a kind of topologically nontrivial quantum state of matter, which has massless Dirac fermions in the bulk and topologically protected states on certain surfaces. In supercond...Topological Dirac semimetals(DSMs) present a kind of topologically nontrivial quantum state of matter, which has massless Dirac fermions in the bulk and topologically protected states on certain surfaces. In superconducting DSMs, the effects of their nontrivial topology on superconducting pairing could realize topological superconductivity in the bulk or on the surface. As superconducting pairing takes place at the Fermi level E_F, to make the effects possible, the Dirac points should lie in the vicinity of E_F so that the topological electronic states can participate in the superconducting paring. Here,we show using angle-resolved photoelectron spectroscopy that in a series of(Ir_(1-x)Pt_x)Te_2 compounds, the type-Ⅱ Dirac points reside around E_F in the superconducting region, in which the bulk superconductivity has a maximum T_c of ~ 3 K.The realization of the coexistence of bulk superconductivity and low-energy Dirac fermions in(Ir_(1-x)Pt_x)Te_2 paves the way for studying the effects of the nontrivial topology in DSMs on the superconducting state.展开更多
We study the Kondo screening of a spin-1/2 magnetic impurity in the hybrid nodal line semimetals(NLSMs) and the type-Ⅱ NLSMs by using the variational method. We mainly study the binding energy and the spin–spin corr...We study the Kondo screening of a spin-1/2 magnetic impurity in the hybrid nodal line semimetals(NLSMs) and the type-Ⅱ NLSMs by using the variational method. We mainly study the binding energy and the spin–spin correlation between magnetic impurity and conduction electrons. We find that in both the hybrid and type-Ⅱ cases, the density of states(DOS) is always finite, so the impurity and the conduction electrons always form bound states, and the bound state is more easily formed when the DOS is large. Meanwhile, due to the unique dispersion relation and the spin–orbit couplings in the NLSMs, the spatial spin–spin correlation components show very interesting features. Most saliently, various components of the spatial spin–spin correlation function decay with 1/r^(2) in the hybrid NLSMs, while they follow 1/r^(3) decay in the type-Ⅱ NLSMs. This property is mainly caused by the special band structures in the NLSMs, and it can work as a fingerprint to distinguish the two types of NLSMs.展开更多
We investigate a strain compensation method for the growth of complex interband cascade laser structures. For thick In As/Al Sb superlattice clad layers, the sublayer thicknesses were adjusted so that the tensile stra...We investigate a strain compensation method for the growth of complex interband cascade laser structures. For thick In As/Al Sb superlattice clad layers, the sublayer thicknesses were adjusted so that the tensile strain energy in the In As sublayer was equal to the compressive strain energy in the Al Sb sublayer. For the four-constituent active region, as the compressive strain in the Ga0.65In0.35Sb alloy layer was large, a tensile strain was incorporated in the chirped In As/Al Sb superlattice region for strain compensation to the Ga0.65In0.35Sb alloy. A laser structure of thickness 6 μm was grown on the Ga Sb substrate by molecular beam epitaxy. The wafer exhibited good surface morphology and high crystalline quality.展开更多
基金Supported by the NSF of China(69971016) Supported by the Shanghai Higher Learning Science Supported by the Technology Development Foundation(00JC14507)
文摘In present paper, we obtain the inverse moment estimations of parameters of the Birnbaum-Saunders fatigue life distribution based on Type-Ⅱ bilateral censored samples and multiply Type-Ⅱ censored sample. In this paper, we also get the interval estimations of the scale parameters.
基金Supported by the NSF of China(69971016)Supported by the Shanghai Higher Learning Science and Technology Development Foundation(04DB24)
文摘In present paper, we derive the quasi-least squares estimation(QLSE) and approximate maximum likelihood estimation(AMLE) for the Birnbaum-Saunders fatigue life distribution under multiply Type-Ⅱcensoring. Furthermore, we get the variance and covariance of the approximate maximum likelihood estimation.
基金supported by the National Natural Science Foundation of China(Grant No.11604246)the China Postdoctoral Science Foundation(Grant No.2016M592714)+2 种基金the Professional Practice Demonstration Base for Professional Degree Graduate in Material Engineering of Henan Polytechnic University,China(Grant No.2016YJD03)the Funds from the Education Department of Henan Province,China(Grant Nos.12A430010 and 17A430020)the Project for Key Science and Technology Research of Henan Province,China(Grant No.162102210275)
文摘In order to synthesize high-quality type-Ⅱa large diamond, the selection of catalyst is very important, in addition to the nitrogen getter. In this paper, type-IIa large diamonds are grown under high pressure and high temperature(HPHT) by using the temperature gradient method(TGM), with adopting Ti/Cu as the nitrogen getter in Ni70Mn25Co5(abbreviated as NiMnCo) or Fe(55)Ni(29)Co(16)(abbreviated FeNiCo) catalyst. The values of nitrogen concentration(Nc) in both synthesized high-quality diamonds are less than 1 ppm, when Ti/Cu(1.6 wt%) is added in the FeNiCo or Ti/Cu(1.8 wt%) is added in the NiMnCo. The difference in solubility of nitrogen between both catalysts at HPHT is the basic reason for the different effect of Ti/Cu on eliminating nitrogen. The nitrogen-removal efficiency of Ti/Cu in the NiMnCo catalyst is less than in the FeNiCo catalyst. Additionally, a high-quality type-Ⅱa large diamond size of 5.0 mm is obtained by reducing the growth rate and keeping the nitrogen concentration of the diamond to be less than 1 ppm, when Ti/Cu(1.6 wt%) is added in the FeNiCo catalyst.
基金Project supported by the Beijing Scholars Program(Grant No.74A2111113)the Research Project of Beijing Education Committee(Grant No.KM202111232019)+1 种基金the National Natural Science Foundation of China(Grant No.62105039)the Research Project of Beijing Information Science&Technology University(Grant No.2022XJJ07)
文摘We systematically investigate the influence of InSb interface(IF)engineering on the crystal quality and optical properties of strain-balanced InAs/GaSb type-Ⅱsuperlattices(T2SLs).The type-Ⅱsuperlattice structure is 120 periods InAs(8 ML)/GaSb(6 ML)with different thicknesses of InSb interface grown by molecular beam epitaxy(MBE).The highresolution x-ray diffraction(XRD)curves display sharp satellite peaks,and the narrow full width at half maximum(FWHM)of the 0th is only 30-39 arcsec.From high-resolution cross-sectional transmission electron microscopy(HRTEM)characterization,the InSb heterointerfaces and the clear spatial separation between the InAs and GaSb layers can be more intuitively distinguished.As the InSb interface thickness increases,the compressive strain increases,and the surface“bright spots”appear to be more apparent from the atomic force microscopy(AFM)results.Also,photoluminescence(PL)measurements verify that,with the increase in the strain,the bandgap of the superlattice narrows.By optimizing the InSb interface,a high-quality crystal with a well-defined surface and interface is obtained with a PL wavelength of 4.78μm,which can be used for mid-wave infrared(MWIR)detection.
基金supported by "973" Program (No.2012CB619301 and 2011CB925600)the National Natural Science Foundations of China (No.61227009,61106008,61106118,90921002,and 60827004)+1 种基金the Natural Science Foundations of Fujian Provincethe fundamental research funds for the central universities (No.2011121042 and 2011121026)
文摘Nanowire-based photovoltaic devices have the advantages over planar devices in light absorption and charge transport and collection.Recently,a new strategy relying on type-Ⅱ band alignment has been proposed to facilitate efficient charge separation in core/shell nanowire solar cells.This paper reviews the type-Ⅱ heterojunction solar cells based on core/shell nanowire arrays,and specifically focuses on the progress of theoretical design and fabrication of type-Ⅱ Zn O/Zn Se core/shell nanowire-based solar cells.A strong photoresponse associated with the type-Ⅱ interfacial transition exhibits a threshold of 1.6 e V,which demonstrates the feasibility and great potential for exploring all-inorganic versions of type-Ⅱ heterojunction solar cells using wide bandgap semiconductors.Future prospects in this area are also outlooked.
基金supported by the National Natural Science Foundation of China(21663030,21666039)the Open Project of State Key Laboratory of Organic-Inorganic Composites Beijing Key Laboratory,Beijing University of Chemical Technology(oic-201901009)+2 种基金the Project of Science&Technology Office of Shannxi Province(2018TSCXL-NY-02-01,2013K11-08,2013SZS20-P01)Industrial Key Project of Yan’an Science and Technology Bureau(2018KG-04)the Project of Yan’an Science Graduate Innovation Project of Yan’an University(YCX201988)~~
文摘In this work,a set of novel Cu2ZnSnS4/Bi2WO6(CZTS/BWO)two-dimensional(2 D)/two-dimensional(2 D)type-Ⅱheterojunctions with different CZTS weight ratios(1%,2%,and 5%)were successfully synthesized via a brief secondary solvothermal process.The successful formation of the heterojunctions was affirmed by characterization methods such as X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy.The photocatalytic activity results showed that the prepared CZTS/BWO heterojunctions had excellent photocatalytic behaviors for organic degradation,especially when the mass fraction of CZTS with respect to BWO in the composite was 2%.Moreover,the addition of hydrogen peroxide(H2O2)could further improve the dye and antibiotic degradation efficiencies.The reinforced photocatalytic and photo-Fenton degradation performance were primarily attributable to the introduction of BWO,which afforded increased active sites,expanded the solar spectral response range,and accelerated the cycle of Cu(Ⅱ)/Cu(Ⅰ);after four cycling times,its catalytic activity did not decrease significantly.In addition,reasonable hypotheses of the photocatalytic and photo-Fenton catalytic mechanisms were formulated.This study is expected to provide a visual approach for designing a novel photo-Fenton catalyst to jointly utilize the photocatalytic and Fenton activities,which can be better applied to the purification of residual organics in wastewater.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB932904 and 2011CB922201)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)the National Natural Science Foundation of China(Grant Nos.61274013,61290303,and 61306013)
文摘A very long wavelength infrared(VLWIR) focal plane array based on In As/Ga Sb type-Ⅱ super-lattices is demonstrated on a Ga Sb substrate. A hetero-structure photodiode was grown with a 50% cut-off wavelength of 15.2 μm, at 77 K.A 320×256 VLWIR focal plane array with this design was fabricated and characterized. The peak quantum efficiency without an antireflective coating was 25.74% at the reverse bias voltage of-20 mV, yielding a peak specific detectivity of 5.89×10^10cm·Hz^1/2·W^-1. The operability and the uniformity of response were 89% and 83.17%. The noise-equivalent temperature difference at 65 K exhibited a minimum at 21.4 mK, corresponding to an average value of 56.3 mK.
基金supported by the National Statistical Science Research Project of China(2019LZ32)
文摘This paper considers the parameters and reliability characteristics estimation problem of the generalized Rayleigh distribution under progressively Type-Ⅱ censoring with random removals,that is,the number of units removed at each failure time follows the binomial distribution.The maximum likelihood estimation and the Bayesian estimation are derived.In the meanwhile,through a great quantity of Monte Carlo simulation experiments we have studied different hyperparameters as well as symmetric and asymmetric loss functions in the Bayesian estimation procedure.A real industrial case is presented to justify and illustrate the proposed methods.We also investigate the expected experimentation time and discuss the influence of the parameters on the termination point to complete the censoring test.
文摘TiO2 nanoparticles were prepared using the hydrothermal method and modified with CgN to syn-thesize a Type-Ⅱheterojunction semiconductor photocatalyst,TiO2-C;Na.In addition,a carbon layerwas coated onto the TiO2 nanoparticles and the obtained material was uniformly covered on thesurface of CaNa to form an all-solid-state Z-scheme semiconductor photocatalyst,TiO2-C-C3N4,Through characterization by XRD,XPS,SEM,TEM,BET,photoelectrochemical experiments,UV-visible diffuse reflection,and PL spectroscopy,the charge transfer mechanism and band gappositions for the composite photocatalysts were analyzed.The Type-Ⅱand all-solid-state Z-schemeheterojunction structures were compared.By combining microscopic internal mechanisms withmacroscopic experimental phenomena,the relationship between performance and structure wasverified.Experimental methods were used to explore the adaptation degree of different photocata-lytic mechanisms using the same degradation system.This study highlights effective photocatalystdesign to meet the requirements for specific degradation conditions.
基金Project supported by the National Key Technology R&D Program of China(Grant Nos.2018YFA0209104,2018YFA0209102,2019YFA0705203,and2019YFA070104)the National Natural Science Foundation of China(Grant Nos.61790581,61274013,and 62004189)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB22).
文摘By optimizing theⅤ/Ⅲbeam-equivalent pressure ratio,a high-quality InAs/GaSb type-Ⅱsuperlattice material for the long-wavelength infrared(LWIR)range is achieved by molecular beam epitaxy(MBE).High-resolution x-ray diffraction(HRXRD),atomic force microscopy(AFM),and Fourier transform infrared(FTIR)spectrometer are used to characterize the material growth quality.The results show that the full width at half maximum(FWHM)of the superlattice zero-order diffraction peak,the mismatching of the superlattice zero-order diffraction peak between the substrate diffraction peaks,and the surface roughness get the best results when the beam-equivalent pressure(BEP)ratio reaches the optimal value,which are 28 arcsec,13 arcsec,and 1.63?,respectively.The intensity of the zero-order diffraction peak is strongest at the optimal value.The relative spectral response of the LWIR detector shows that it exhibits a 100%cut-off wavelength of 12.6μm at 77 K.High-quality epitaxial materials have laid a good foundation for preparing high-performance LWIR detector.
基金Project supported by the Talent Introduction Project of Nantong University,China(Grant No.03081055)the National Natural Science Foundation of China(Grant Nos.61874168 and 61505090)+4 种基金Top-notch Academic Programs Project of Jiangsu Higher Education Institutions,China(Grant No.PPZY2015B135)the Six Top Talents of Jiangsu Province,China(Grant No.2016-XCL-052)the Natural Science Foundation of Nantong University,China(Grant Nos.03080666and 14Z003)the Qing Lan Project of Jiangsu Province,ChinaKey NSF Program of Jiangsu Provincial Department of Education,China(Grant No.15KJA510004)
文摘The optical properties of the type-Ⅱ lineup InxAl1-xN-Al0.59Ga0.41N/Al0.74Ga0.26N quantum well(QW) structures with different In contents are investigated by using the six-by-six K-P method.The type-Ⅱ lineup structures exhibit the larger product of Fermi-Dirac distribution functions of electron fc^n and hole(1-fv^Um) and the approximately equal transverse electric(TE) polarization optical matrix elements(|Mx|^2) for the c1-v1 transition.As a result, the peak intensity in the TE polarization spontaneous emission spectrum is improved by 47.45%-53.84% as compared to that of the conventional AlGaN QW structure.In addition, the type-Ⅱ QW structure with x^0.17 has the largest TE mode peak intensity in the investigated In-content range of 0.13-0.23.It can be attributed to the combined effect of |Mx|^2 and fc^n(1-fv^Um) for the c1-v1, c1-v2, and c1-v3 transitions.
基金supported by the Ministry of Science and Technology of China(Grant Nos.2016YFA0300600,2016YFA0401000,2016YFA0302400,and2017YFA0302901)the National Natural Science Foundation of China(Grant Nos.11622435,U1832202,and 11674369)+1 种基金the Chinese Academy of Sciences(Grant Nos.QYZDB-SSW-SLH043,XDB07000000,and XDPB08-1)the Beijing Municipal Science and Technology Commission,China(Grant No.Z171100002017018)
文摘Topological Dirac semimetals(DSMs) present a kind of topologically nontrivial quantum state of matter, which has massless Dirac fermions in the bulk and topologically protected states on certain surfaces. In superconducting DSMs, the effects of their nontrivial topology on superconducting pairing could realize topological superconductivity in the bulk or on the surface. As superconducting pairing takes place at the Fermi level E_F, to make the effects possible, the Dirac points should lie in the vicinity of E_F so that the topological electronic states can participate in the superconducting paring. Here,we show using angle-resolved photoelectron spectroscopy that in a series of(Ir_(1-x)Pt_x)Te_2 compounds, the type-Ⅱ Dirac points reside around E_F in the superconducting region, in which the bulk superconductivity has a maximum T_c of ~ 3 K.The realization of the coexistence of bulk superconductivity and low-energy Dirac fermions in(Ir_(1-x)Pt_x)Te_2 paves the way for studying the effects of the nontrivial topology in DSMs on the superconducting state.
基金supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19A040003)。
文摘We study the Kondo screening of a spin-1/2 magnetic impurity in the hybrid nodal line semimetals(NLSMs) and the type-Ⅱ NLSMs by using the variational method. We mainly study the binding energy and the spin–spin correlation between magnetic impurity and conduction electrons. We find that in both the hybrid and type-Ⅱ cases, the density of states(DOS) is always finite, so the impurity and the conduction electrons always form bound states, and the bound state is more easily formed when the DOS is large. Meanwhile, due to the unique dispersion relation and the spin–orbit couplings in the NLSMs, the spatial spin–spin correlation components show very interesting features. Most saliently, various components of the spatial spin–spin correlation function decay with 1/r^(2) in the hybrid NLSMs, while they follow 1/r^(3) decay in the type-Ⅱ NLSMs. This property is mainly caused by the special band structures in the NLSMs, and it can work as a fingerprint to distinguish the two types of NLSMs.
基金Project supported by the National Key Research and Development Project of China (Grant No. 2018YFB2200500)the National Natural Science Foundation of China (Grant Nos. 61790583, 61835011, 62174158 and 61991431)+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021107)the Key Program of the Chinese Academy of Sciences (Grant No. XDB43000000)。
文摘We investigate a strain compensation method for the growth of complex interband cascade laser structures. For thick In As/Al Sb superlattice clad layers, the sublayer thicknesses were adjusted so that the tensile strain energy in the In As sublayer was equal to the compressive strain energy in the Al Sb sublayer. For the four-constituent active region, as the compressive strain in the Ga0.65In0.35Sb alloy layer was large, a tensile strain was incorporated in the chirped In As/Al Sb superlattice region for strain compensation to the Ga0.65In0.35Sb alloy. A laser structure of thickness 6 μm was grown on the Ga Sb substrate by molecular beam epitaxy. The wafer exhibited good surface morphology and high crystalline quality.