An ideal type-Ⅲnodal point is generated by crossing a completely flat band and a dispersive band along a certain momentum direction.To date,the type-Ⅲnodal points found in two-dimensional(2D)materials have been most...An ideal type-Ⅲnodal point is generated by crossing a completely flat band and a dispersive band along a certain momentum direction.To date,the type-Ⅲnodal points found in two-dimensional(2D)materials have been mostly accidental and random rather than ideal cases,and no one mentions what kind of lattice can produce ideal nodal points.Here,we propose that ideal type-Ⅲnodal points can be obtained in a diamond-like lattice.The flat bands in the lattice originate from destructive interference of wavefunctions,and thus are intrinsic and robust.Moreover,the specific lattice can be realized in some 2D carbon networks,such as T-graphene and its derivatives.All the carbon structures possess type-ⅢDirac points.In two of the structures,consisting of triangular carbon rings,the type-ⅢDirac points are located just on the Fermi level and the Fermi surface is very clean.Our research not only opens a door to finding the ideal type-ⅢDirac points,but also provides 2D materials for exploring their physical properties experimentally.展开更多
Topological Dirac semimetals(DSMs) present a kind of topologically nontrivial quantum state of matter, which has massless Dirac fermions in the bulk and topologically protected states on certain surfaces. In supercond...Topological Dirac semimetals(DSMs) present a kind of topologically nontrivial quantum state of matter, which has massless Dirac fermions in the bulk and topologically protected states on certain surfaces. In superconducting DSMs, the effects of their nontrivial topology on superconducting pairing could realize topological superconductivity in the bulk or on the surface. As superconducting pairing takes place at the Fermi level E_F, to make the effects possible, the Dirac points should lie in the vicinity of E_F so that the topological electronic states can participate in the superconducting paring. Here,we show using angle-resolved photoelectron spectroscopy that in a series of(Ir_(1-x)Pt_x)Te_2 compounds, the type-Ⅱ Dirac points reside around E_F in the superconducting region, in which the bulk superconductivity has a maximum T_c of ~ 3 K.The realization of the coexistence of bulk superconductivity and low-energy Dirac fermions in(Ir_(1-x)Pt_x)Te_2 paves the way for studying the effects of the nontrivial topology in DSMs on the superconducting state.展开更多
A Dirac point is a linear band crossing point originally used to describe unusual transport properties of materials like graphene.In recent years,there has been a surge of exploration of type-II Dirac/Weyl points usin...A Dirac point is a linear band crossing point originally used to describe unusual transport properties of materials like graphene.In recent years,there has been a surge of exploration of type-II Dirac/Weyl points using various engineered platforms including photonic crystals,waveguide arrays,metasurfaces,magnetized plasma and polariton micropillars,aiming toward relativistic quantum emulation and understanding of exotic topological phenomena.Such endeavors,however,have focused mainly on linear topological states in real or synthetic Dirac/Weyl materials.We propose and demonstrate nonlinear valley Hall edge(VHE)states in laserwritten anisotropic photonic lattices hosting innately the type-Ⅱ Dirac points.These self-trapped VHE states,manifested as topological gap quasi-solitons that can move along a domain wall unidirectionally without changing their profiles,are independent of external magnetic fields or complex longitudinal modulations,and thus are superior in comparison with previously reported topological edge solitons.Our finding may provide a route for understanding nonlinear phenomena in systems with type-Ⅱ Dirac points that violate the Lorentz invariance and may bring about possibilities for subsequent technological development in light field manipulation and photonic devices.展开更多
Broken-gap(type-Ⅲ)two-dimensional(2D)van der Waals heterostructures(vdWHs)offer an ideal platform for interband tunneling devices due to their broken-gap band offset and sharp band edge.Here,we demonstrate an efficie...Broken-gap(type-Ⅲ)two-dimensional(2D)van der Waals heterostructures(vdWHs)offer an ideal platform for interband tunneling devices due to their broken-gap band offset and sharp band edge.Here,we demonstrate an efficient control of energy band alignment in a typical type-ⅢvdWH,which is composed of vertically-stacked molybdenum telluride(MoTe2)and tin diselenide(SnSe2),via both electrostatic and optical modulation.By a single electrostatic gating with hexagonal boron nitride(hBN)as the dielectric,a variety of electrical transport characteristics including forward rectifying,Zener tunneling,and backward rectifying are realized on the same heterojunction at low gate voltages of±1 V.In particular,the heterostructure can function as an Esaki tunnel diode with a room-temperature negative differential resistance.This great tunability originates from the atomicallyflat and inert surface of h-BN that significantly suppresses the interfacial trap scattering and strain effects.Upon the illumination of an 885 nm laser,the band alignment of heterojunction can be further tuned to facilitate the direct tunneling of photogenerated charge carriers,which leads to a high photocurrent on/off ratio of>105 and a competitive photodetectivity of 1.03×1012 Jones at zero bias.Moreover,the open-circuit voltage of irradiated heterojunction can be switched from positive to negative at opposite gate voltages,revealing a transition from accumulation mode to depletion mode.Our findings not only promise a simple strategy to tailor the bands of type-ⅢvdWHs but also provide an in-depth understanding of interlayer tunneling for future low-power electronic and optoelectronic applications.展开更多
Bacterial wilt caused by the soil-borne plant pathogen Ralstonia solanacearum is a devastating disease worldwide.Upon plant colonization,R.solanacearum replicates massively,causing plant wilting and death;collapsed in...Bacterial wilt caused by the soil-borne plant pathogen Ralstonia solanacearum is a devastating disease worldwide.Upon plant colonization,R.solanacearum replicates massively,causing plant wilting and death;collapsed infected tissues then serve as a source of inoculum.In this work,we show that the plant metabolic pathway mediated by pyruvate decarboxylases(PDCs)contributes to plant tolerance to bacterial wilt disease.Arabidopsis and tomato plants resp ond to R.solanacearum infection by in creasing PDC activity,and plants with deficient PDC activity are more susceptible to bacterial wilt.Treatment with either pyruvic acid or acetic acid(substrate and product of the PDC pathway,respectively)enhances plant tolerance to bacterial wilt disease.An effector protein secreted by R.solanacearum,RipAK,interacts with PDCs and inhibits their oligomerization and enzymatic activity.Collectively,our work reveals a metabolic pathway involved in plant resistance to biotic and abiotic stresses,and a bacterial virulence strategy to promote disease and the completion of the pathogenic life cycle.展开更多
Adiponectin plays an important role in the development of hypertension, atherosclerosis, and cardio- myocyte hypertrophy, but very little was known about the influence of serum adiponectin or the adiponectin gene poly...Adiponectin plays an important role in the development of hypertension, atherosclerosis, and cardio- myocyte hypertrophy, but very little was known about the influence of serum adiponectin or the adiponectin gene polymorphism on myocardial fibrosis. Our study investigates the influence of the SNP +45 polymorphism of the adi- ponectin gene and serum levels of adiponectin on myocardial fibrosis in patients with essential hypertension. A case-control study was conducted on 165 hypertensive patients and 126 normotensive healthy controls. The geno- types of adiponectin gene polymorphisms were detected by the polymerase chain reaction (PCR) method. Serum concentrations of procollagen were measured by a double antibody sandwich enzyme-linked immunosorbent assay (ELISA) in all subjects. The integrated backscatter score (IBS) was measured in the left ventricular myocardium using echocardiography. The serum levels of adiponectin in hypertensive patients were significantly lower than those in the normal control group ((2.69±1.0) μg/ml vs. (4.21±2.89) μg/ml, respectively, P〈0.001). The serum levels of type-Ⅰ procoilagen carboxyl end peptide (PiCP) and type-Ⅲprocollagen ammonia cardinal extremity peptide (PIIINP) in the hypertension group were significantly higher than those in the control group. In the hypertension group, serum levels of adiponectin were significantly and negatively related to the average acoustic intensity and corrected acoustic intensity of the myocardium (t=0.46 and 0.61, respectively, P〈0.05 for both). The serum levels of PICP and PIIINP were sig- nificantly different among the three genotypes of SNP +45 (P〈0.01). Logistic regression analyses showed that sex and genotype (GG+GT) were the major risk factors of myocardial fibrosis in hypertensive patients (OR=5.343 and 3.278, respectively, P〈0.05). These data suggest that lower levels of adiponectin and SNP +45 polymorphism of the adi- ponectin gene are likely to play an important role in myocardial fibrosis in hypertensive patients.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174157,12074150,and 11874314)。
文摘An ideal type-Ⅲnodal point is generated by crossing a completely flat band and a dispersive band along a certain momentum direction.To date,the type-Ⅲnodal points found in two-dimensional(2D)materials have been mostly accidental and random rather than ideal cases,and no one mentions what kind of lattice can produce ideal nodal points.Here,we propose that ideal type-Ⅲnodal points can be obtained in a diamond-like lattice.The flat bands in the lattice originate from destructive interference of wavefunctions,and thus are intrinsic and robust.Moreover,the specific lattice can be realized in some 2D carbon networks,such as T-graphene and its derivatives.All the carbon structures possess type-ⅢDirac points.In two of the structures,consisting of triangular carbon rings,the type-ⅢDirac points are located just on the Fermi level and the Fermi surface is very clean.Our research not only opens a door to finding the ideal type-ⅢDirac points,but also provides 2D materials for exploring their physical properties experimentally.
基金supported by the Ministry of Science and Technology of China(Grant Nos.2016YFA0300600,2016YFA0401000,2016YFA0302400,and2017YFA0302901)the National Natural Science Foundation of China(Grant Nos.11622435,U1832202,and 11674369)+1 种基金the Chinese Academy of Sciences(Grant Nos.QYZDB-SSW-SLH043,XDB07000000,and XDPB08-1)the Beijing Municipal Science and Technology Commission,China(Grant No.Z171100002017018)
文摘Topological Dirac semimetals(DSMs) present a kind of topologically nontrivial quantum state of matter, which has massless Dirac fermions in the bulk and topologically protected states on certain surfaces. In superconducting DSMs, the effects of their nontrivial topology on superconducting pairing could realize topological superconductivity in the bulk or on the surface. As superconducting pairing takes place at the Fermi level E_F, to make the effects possible, the Dirac points should lie in the vicinity of E_F so that the topological electronic states can participate in the superconducting paring. Here,we show using angle-resolved photoelectron spectroscopy that in a series of(Ir_(1-x)Pt_x)Te_2 compounds, the type-Ⅱ Dirac points reside around E_F in the superconducting region, in which the bulk superconductivity has a maximum T_c of ~ 3 K.The realization of the coexistence of bulk superconductivity and low-energy Dirac fermions in(Ir_(1-x)Pt_x)Te_2 paves the way for studying the effects of the nontrivial topology in DSMs on the superconducting state.
基金supported by the National Key R&D Program of China(No.2017YFA0303800)the National Natural Science Foundation of China(Nos.12074308,11922408,11674180,and U1537210)the Fundamental Research Funds for the Central Universities(Nos.xzy012019038 and 63213041).
文摘A Dirac point is a linear band crossing point originally used to describe unusual transport properties of materials like graphene.In recent years,there has been a surge of exploration of type-II Dirac/Weyl points using various engineered platforms including photonic crystals,waveguide arrays,metasurfaces,magnetized plasma and polariton micropillars,aiming toward relativistic quantum emulation and understanding of exotic topological phenomena.Such endeavors,however,have focused mainly on linear topological states in real or synthetic Dirac/Weyl materials.We propose and demonstrate nonlinear valley Hall edge(VHE)states in laserwritten anisotropic photonic lattices hosting innately the type-Ⅱ Dirac points.These self-trapped VHE states,manifested as topological gap quasi-solitons that can move along a domain wall unidirectionally without changing their profiles,are independent of external magnetic fields or complex longitudinal modulations,and thus are superior in comparison with previously reported topological edge solitons.Our finding may provide a route for understanding nonlinear phenomena in systems with type-Ⅱ Dirac points that violate the Lorentz invariance and may bring about possibilities for subsequent technological development in light field manipulation and photonic devices.
基金the National Natural Science Foundation of China(No.62004128)Fundamental Research Foundation of Shenzhen(No.JCYJ20190808152607389)the technical support from the Photonics Center of Shenzhen University.
文摘Broken-gap(type-Ⅲ)two-dimensional(2D)van der Waals heterostructures(vdWHs)offer an ideal platform for interband tunneling devices due to their broken-gap band offset and sharp band edge.Here,we demonstrate an efficient control of energy band alignment in a typical type-ⅢvdWH,which is composed of vertically-stacked molybdenum telluride(MoTe2)and tin diselenide(SnSe2),via both electrostatic and optical modulation.By a single electrostatic gating with hexagonal boron nitride(hBN)as the dielectric,a variety of electrical transport characteristics including forward rectifying,Zener tunneling,and backward rectifying are realized on the same heterojunction at low gate voltages of±1 V.In particular,the heterostructure can function as an Esaki tunnel diode with a room-temperature negative differential resistance.This great tunability originates from the atomicallyflat and inert surface of h-BN that significantly suppresses the interfacial trap scattering and strain effects.Upon the illumination of an 885 nm laser,the band alignment of heterojunction can be further tuned to facilitate the direct tunneling of photogenerated charge carriers,which leads to a high photocurrent on/off ratio of>105 and a competitive photodetectivity of 1.03×1012 Jones at zero bias.Moreover,the open-circuit voltage of irradiated heterojunction can be switched from positive to negative at opposite gate voltages,revealing a transition from accumulation mode to depletion mode.Our findings not only promise a simple strategy to tailor the bands of type-ⅢvdWHs but also provide an in-depth understanding of interlayer tunneling for future low-power electronic and optoelectronic applications.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(grant XDB27040204)the National Natural Science Foundation of China(grant 31571973)+1 种基金the Chinese 1000 Talents Programthe Shanghai Center for Plant Stress Biology(Chinese Academy of Sciences).
文摘Bacterial wilt caused by the soil-borne plant pathogen Ralstonia solanacearum is a devastating disease worldwide.Upon plant colonization,R.solanacearum replicates massively,causing plant wilting and death;collapsed infected tissues then serve as a source of inoculum.In this work,we show that the plant metabolic pathway mediated by pyruvate decarboxylases(PDCs)contributes to plant tolerance to bacterial wilt disease.Arabidopsis and tomato plants resp ond to R.solanacearum infection by in creasing PDC activity,and plants with deficient PDC activity are more susceptible to bacterial wilt.Treatment with either pyruvic acid or acetic acid(substrate and product of the PDC pathway,respectively)enhances plant tolerance to bacterial wilt disease.An effector protein secreted by R.solanacearum,RipAK,interacts with PDCs and inhibits their oligomerization and enzymatic activity.Collectively,our work reveals a metabolic pathway involved in plant resistance to biotic and abiotic stresses,and a bacterial virulence strategy to promote disease and the completion of the pathogenic life cycle.
基金Project supported by the Natural Science Foundation of Shandong Province, China (No. ZR2012HL19)the Science and Technology Development Plan of Tai’an City, China (No. 20113096)
文摘Adiponectin plays an important role in the development of hypertension, atherosclerosis, and cardio- myocyte hypertrophy, but very little was known about the influence of serum adiponectin or the adiponectin gene polymorphism on myocardial fibrosis. Our study investigates the influence of the SNP +45 polymorphism of the adi- ponectin gene and serum levels of adiponectin on myocardial fibrosis in patients with essential hypertension. A case-control study was conducted on 165 hypertensive patients and 126 normotensive healthy controls. The geno- types of adiponectin gene polymorphisms were detected by the polymerase chain reaction (PCR) method. Serum concentrations of procollagen were measured by a double antibody sandwich enzyme-linked immunosorbent assay (ELISA) in all subjects. The integrated backscatter score (IBS) was measured in the left ventricular myocardium using echocardiography. The serum levels of adiponectin in hypertensive patients were significantly lower than those in the normal control group ((2.69±1.0) μg/ml vs. (4.21±2.89) μg/ml, respectively, P〈0.001). The serum levels of type-Ⅰ procoilagen carboxyl end peptide (PiCP) and type-Ⅲprocollagen ammonia cardinal extremity peptide (PIIINP) in the hypertension group were significantly higher than those in the control group. In the hypertension group, serum levels of adiponectin were significantly and negatively related to the average acoustic intensity and corrected acoustic intensity of the myocardium (t=0.46 and 0.61, respectively, P〈0.05 for both). The serum levels of PICP and PIIINP were sig- nificantly different among the three genotypes of SNP +45 (P〈0.01). Logistic regression analyses showed that sex and genotype (GG+GT) were the major risk factors of myocardial fibrosis in hypertensive patients (OR=5.343 and 3.278, respectively, P〈0.05). These data suggest that lower levels of adiponectin and SNP +45 polymorphism of the adi- ponectin gene are likely to play an important role in myocardial fibrosis in hypertensive patients.