In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homoge...In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.展开更多
利用NECP的FNL再分析资料,对1522号强台风"彩虹"在近海急剧增强的特征及机理进行分析。结果表明:"彩虹"强度变化与南亚高压、副热带高压的环流配置存在密切的联系,南亚高压由西部型调整为东部型,并且在我国东部沿...利用NECP的FNL再分析资料,对1522号强台风"彩虹"在近海急剧增强的特征及机理进行分析。结果表明:"彩虹"强度变化与南亚高压、副热带高压的环流配置存在密切的联系,南亚高压由西部型调整为东部型,并且在我国东部沿海台风中心上方形成一个很强的高压中心,有利于高空辐散的增强,同时500 h Pa副热带高压西伸北抬海上水汽输送加强,为"彩虹"的发展提供有利的环境条件;介于-4~4 m/s弱的200 h Pa和850 h Pa高低层环境风垂直切变是"彩虹"急剧增强的必要条件,并且"彩虹"强度的急剧变化与低层弱的垂直风切变存在显著的滞后相关;台风的暖心结构在台风急剧增强的过程中迅速加强,暖心结构维持较好也是其强度维持的重要因素之一。展开更多
基金This work is supported by the National Key Research and Development Plan program of the Ministry of Science and Technology of China(No.2016YFB0201100)Additionally,this work is supported by the National Laboratory for Marine Science and Technology(Qingdao)Major Project of the Aoshan Science and Technology Innovation Program(No.2018ASKJ01-04)the Open Fundation of Key Laboratory of Marine Science and Numerical Simulation,Ministry of Natural Resources(No.2021-YB-02).
文摘In this paper,a typical experiment is carried out based on a high-resolution air-sea coupled model,namely,the coupled ocean-atmosphere-wave-sediment transport(COAWST)model,on both heterogeneous many-core(SW)and homogenous multicore(Intel)supercomputing platforms.We construct a hindcast of Typhoon Lekima on both the SW and Intel platforms,compare the simulation results between these two platforms and compare the key elements of the atmospheric and ocean modules to reanalysis data.The comparative experiment in this typhoon case indicates that the domestic many-core computing platform and general cluster yield almost no differences in the simulated typhoon path and intensity,and the differences in surface pressure(PSFC)in the WRF model and sea surface temperature(SST)in the short-range forecast are very small,whereas a major difference can be identified at high latitudes after the first 10 days.Further heat budget analysis verifies that the differences in SST after 10 days are mainly caused by shortwave radiation variations,as influenced by subsequently generated typhoons in the system.These typhoons generated in the hindcast after the first 10 days attain obviously different trajectories between the two platforms.
文摘利用NECP的FNL再分析资料,对1522号强台风"彩虹"在近海急剧增强的特征及机理进行分析。结果表明:"彩虹"强度变化与南亚高压、副热带高压的环流配置存在密切的联系,南亚高压由西部型调整为东部型,并且在我国东部沿海台风中心上方形成一个很强的高压中心,有利于高空辐散的增强,同时500 h Pa副热带高压西伸北抬海上水汽输送加强,为"彩虹"的发展提供有利的环境条件;介于-4~4 m/s弱的200 h Pa和850 h Pa高低层环境风垂直切变是"彩虹"急剧增强的必要条件,并且"彩虹"强度的急剧变化与低层弱的垂直风切变存在显著的滞后相关;台风的暖心结构在台风急剧增强的过程中迅速加强,暖心结构维持较好也是其强度维持的重要因素之一。