Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for Mediu...Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.展开更多
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ...The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.展开更多
To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data prov...To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and the CMA Tropical Cyclone Best Track Dataset.We also adopted the mesoscale forecast model Weather Research and Forecasting model V4.3 for numerical simulation.Most of the previous studies were about typhoon-induced STE and typhoon-induced GWs,while our research focused on the STE caused by typhoon-induced gravity waves.Our analysis shows that most of the time,the gravity wave signal of Typhoon Molave appeared below the tropopause.It was stronger on the east side of the typhoon center(10°-20°N,110°-120°E)than on the west side,suggesting an eastward tilted structure with height increase.When the GWs in the upper troposphere and lower stratosphere region on the west side of the typhoon center broke up,it produced strong turbulence,resulting in stratosphere-troposphere exchange.At this time,the average potential vorticity vertical flux increased with the average ozone mass mixing ratio.The gravity wave events and STE process simulated by the WRF model were basically consistent with the results of ERA5 reanalysis data,but the time of gravity wave breaking was different.This study indicates that after the breaking of the GWs induced by typhoons,turbulent mixing will also be generated,and thus the STE.展开更多
Wave fields in Beibu Bay during Typhoon Damrey (2005) were simulated by SWAN wave model through inputting high resolution reanalysis wind fields data, current and water level data. Comparisons for wind input and wav...Wave fields in Beibu Bay during Typhoon Damrey (2005) were simulated by SWAN wave model through inputting high resolution reanalysis wind fields data, current and water level data. Comparisons for wind input and wave hindcast between observation and simulation show good consistency. Distributions of wave parameters such as wave height, wave period, wave length and wave direction under typhoon wind forcing were given. Also, the directional spectra related to the different position from the typhoon center were discussed. And at last, the variation and characteristics of observed frequency spectrum during the passage of Damrey were presented.展开更多
In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ...In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.展开更多
In this study, we simulated typhoon waves in the shallow waters around the Zhoushan Islands using the WaveWatch-Ⅲ(WW3) model version 5.16, the latest version released by the National Oceanic and Atmospheric Administr...In this study, we simulated typhoon waves in the shallow waters around the Zhoushan Islands using the WaveWatch-Ⅲ(WW3) model version 5.16, the latest version released by the National Oceanic and Atmospheric Administration. Specifically, we used in-situ measurements to evaluate the performance of seven packages of input/dissipation source terms in the WW3 model. We forced the WW3 model by wind fields derived from a combination of the parametric Holland model and high-resolution European Center for Medium-Range Weather Forecasts(ECMWF) wind data in a 0.125? grid, herein called H-E winds. We trained the H-E winds by fitting a shape parameter B to buoy-measured observations, which resulted in a smallest root mean square error(RMSE) of 3 m s^(-1) for B, when treated as a constant 0.4. Then, we applied the seven input/dissipation terms of WW3, labelled ST1, ST2, ST2+STAB2, ST3, ST3+STAB3, ST4, and ST6, to simulate the significant wave height(SWH) up to 5 m during typhoons Fungwong and Chan-hom around the Zhoushan Islands. We then compared the SWHs of the simulated waves with those measured by the in-situ buoys. The results indicate that the simulation using ST2 performs best with an RMSE of 0.79 m for typhoon Fung-wong and an RMSE of 1.12 m for typhoon Chan-hom. Interestingly, we found the simulated SWH results to be relatively higher than those of the observations in the area between Hangzhou Bay and the Zhoushan Islands. This behavior is worthy of further investigation in the future.展开更多
In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nes...In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nesat passed the array. The associated near-inertial currents are surface-intensified and clockwise-polarized. The vertical range of NIWs reached 300 m, where the vertical range is defined as the maximum depth of the horizontal near-inertial velocity 5 cm/s. The current oscillations have a frequency of 0.709 9 cycles per day(cpd), which is 0.025 f higher than the local inertial frequency. The NIWs have an e-folding time-scale of 10 d based on the evolution of the near-inertial kinetic energy. The depth-leading phase of near-inertial currents indicates downward group velocity and energy flux. The estimated vertical phase velocity and group velocity are 0.27 and 0.08 cm/s respectively, corresponding to a vertical wavelength of 329 m. A spectral analysis reveals that NIWs act as a crucial process to redistribute the energy injected by Typhoon Nesat. A normal mode and an empirical orthogonal function analysis indicate that the second mode has a dominant variance contribution of 81%, and the corresponding horizontal phase velocity and wavelength are 3.50 m/s and 420 km respectively. The remarkable large horizontal phase velocity is relevant to the rotation of the earth, and a quantitative analysis suggests that the phase velocity of the NIWs with a blue-shift of 0.025 f overwhelms that of internal gravity waves by a factor of 4.6.展开更多
In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind f...In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model.Various parameters,such as the Holland fitting parameter(B)and the maximum wind radius?,were investigated in sensitivity experiments in the Holland model that affect the wind field construction.Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements.The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied,including wind input,whitecapping,and bottom friction.Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation)and the JONSWAP scheme(dissipation of bottom friction)resulted in good reproduction of the significant wave height of typhoon waves.A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon,while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves.The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.展开更多
The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea...The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea(SCS) was evaluated. A blended wind field, consisting of an interior domain based on Fujita's model and an exterior domain based on Takahashi's model, was used as the driving wind field. The waves driven by Typhoon Kai-tak over the SCS that occurred in 2012 were selected for the numerical simulation research. Sensitivity analyses of time step, grid resolution, and angle resolution were performed in order to obtain optimal model settings. Through sensitivity analyses, it can be found that the time step has a large influence on the results, while grid resolution and angle resolution have a little effect on the results.展开更多
The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Lium...The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required.展开更多
Typhoon Rananim (2004) was one of the severest typhoons landfalling the Chinese mainland from 1996 to 2004. It brought serious damage and induced prodigious economical loss. Using a new generation of mesoscale model...Typhoon Rananim (2004) was one of the severest typhoons landfalling the Chinese mainland from 1996 to 2004. It brought serious damage and induced prodigious economical loss. Using a new generation of mesoscale model, named the Weather Research and Forecasting (WRF) modeling system, with 1.667 km grid horizontal spacing on the finest nested mesh, Rananim was successfully simulated in terms of track, intensity, eye, eyewall, and spiral rainbands. We compared the structures of Rananim to those of hurricanes in previous studies and observations to assess the validity of simulation. The three-dimensional (3D) dynamic and thermal structures of eye and eyewall were studied based on the simulated results. The focus was investigation of the characteristics of the vortex Rossby waves in the inner-core region. We found that the Rossby vortex waves propagate azimuthally upwind against the azimuthal mean tangential flow around the eyewall, and their period was longer than that of an air parcel moving within the azimuthal mean tangential flow. They also propagated outward against the boundary layer inflow of the azimuthal mean vortex. Puthermore, we studied the connection between the spiral potential vorticity (PV) bands and spiral rainbands, and found that the vortex Rossby waves played an important role in the formation process of spiral rainbands.展开更多
The formation and development of typhoons are closely related to the disturbed low vortexes at the planetary boundary layer(PBL). The effects of five PBL parameterization schemes(PBL schemes hereinafter) on the trajec...The formation and development of typhoons are closely related to the disturbed low vortexes at the planetary boundary layer(PBL). The effects of five PBL parameterization schemes(PBL schemes hereinafter) on the trajectory,intensity, and distribution of physical quantities are studied using the mesoscale WRF model on Super Typhoon Sanba(2012) during its initial stage. Results show that the five PBL schemes exhibit significant different effects on the simulated intensity and path. The results simulated by QNSE and ACM2 without the Bogus method are close to the best track data in the numerical experiments. When the Bogus method is adopted, the simulated trajectories improve significantly because the initial field is close to the true data. Among the five PBL schemes, QNSE and ACM2 with the Bogus method present improved simulated path and intensity compared with the three other schemes. This finding indicates that the two schemes deal with the initial PBL process satisfactorily, especially in the formation and development of disturbed low vortexes. The differences in the treatment methods of the five PBL schemes affect the surface layer physical quantities and the middle and upper atmospheres during the middle to late periods of the typhoon.Although QNSE and ACM2 present better simulation results than other schemes, they exhibit a few differences in the internal structure of the typhoon. The results simulated by MYJ are worse, and this method may be unsuitable for studying the formation and development of typhoons.展开更多
We use the WAVEWATCH-III model to quantify the effect of oceanic current on typhoon-wave modeling in the East-China-Sea(ECS).Typhoons Jelawat and Saomai in the autumn of 2000 are hindcasted.The oceanic currents in t...We use the WAVEWATCH-III model to quantify the effect of oceanic current on typhoon-wave modeling in the East-China-Sea(ECS).Typhoons Jelawat and Saomai in the autumn of 2000 are hindcasted.The oceanic currents in the ECS are mainly constituted of Kuroshio and typhoon-generated currents.The results show distinguishable differences in wave height and wave period under the typhoon conditions.The oceanic current causes the maximum differences,of up to a 0.5 m significant wave height and a 1 s mean wave period.Comparisons between typhoons Jelawat and Saomai show the dependence of the current effect on the typhoon characteristics.展开更多
Reasonably accurate predictions of wave heights, current and elevations during storm events are vital information for marine operations and design of offshore and coastal structures in the surrounding seas of Korea Pe...Reasonably accurate predictions of wave heights, current and elevations during storm events are vital information for marine operations and design of offshore and coastal structures in the surrounding seas of Korea Peninsula. Ocean circulation and wind-wave models have traditionally been run separately, but recent researches have identified potentially important interactions between current and wave motions. The coupled tide-surge and the WAM wave models at the atmospheric boundary layer and bottom boundary layer around the Korea Peninsula are applied for the Typhoon Maemi (0314) event. Communication between the models is aehievod using MPI. Results are compared with coastal tide gauges and moored wave buoys and comparisons are also made between wave computations from the coupled model and the independent third generation wave models. Results suggest that applying the fide-surge-coupled model can be an effective means of obtaining wave and storm surge predictions simultaneously.展开更多
An integrally coupled wave-tide-surge model was developed and then applied to the simulation of the wave-typhoon surge for the typhoon Isewan (typhoon Vera (5915)), which is the strongest typhoon that has struck J...An integrally coupled wave-tide-surge model was developed and then applied to the simulation of the wave-typhoon surge for the typhoon Isewan (typhoon Vera (5915)), which is the strongest typhoon that has struck Japan and caused incalculable damage. An integrally coupled tide-surge-wave model using identical and homogeneous meshes in an unstructured grid system was used to correctly resolve the physics of wave-circulation interaction in both models. All model components were validated independently. The storm surge and wave properties such as the surge height, the significant wave height, wave period and direction were reproduced reasonably under the meteorological forcing, which was reprocessed to be close to the observations. The resulting modeling system can be used extensively for the prediction of the storm surge and waves and the usual barotropic forecast.展开更多
This study aims to estimate and predict the impact of climate change on typhoons and wave overtopping during typhoon progresses in Qingdao, China. The SWAN wave model is used to simulate wave elements. The scale coeff...This study aims to estimate and predict the impact of climate change on typhoons and wave overtopping during typhoon progresses in Qingdao, China. The SWAN wave model is used to simulate wave elements. The scale coefficients of wave overtopping are estimated using an empirical prediction formula. A total of 75 tropical cyclones affected Qingdao from 1949 to 2019. These tropical cyclones can be grouped into eight categories according to typhoon tracks. Typhoon wind speed during Track G is projected to decrease, and those of the other seven typhoon progresses will increase by 0.35% – 0.75% in 2025, 0.69% – 1.5% in 2035, and 1.38% – 3.0% in 2055. The significant wave height and wave overtopping outside the bay are greater than those inside the bay. Among the 506 typical points selected, the maximum values of the significant wave height and wave overtopping inside the bay are mainly distributed in the range of 0 – 2 m and 0 – 60 m^3 km^(-1) s^(-1), respectively. The increments of the significant wave height and wave overtopping of Track F are most obvious. The significant wave height of Track F will increase by 50.5% in 2025, 51.8% in 2035, and 53.4% in 2055. In the 2℃ scenario, the maximum value of wave overtopping of Track F will increase by 21.9% in 2025, 24.3% in 2035, and 29.5% in 2055. In the 4℃ scenario, the maximum value of wave overtopping of Track F will increase by 21.9% in 2025, 24.3% in 2035, and 29.5% in 2055.展开更多
This study examined the characteristics and vertical propagation of near inertial waves(NIWs)induced by Typhoon Linfa(2015),based on in situ observations conducted southeast of Dongsha Islands in the South China Sea.T...This study examined the characteristics and vertical propagation of near inertial waves(NIWs)induced by Typhoon Linfa(2015),based on in situ observations conducted southeast of Dongsha Islands in the South China Sea.The results demonstrate that the near inertial currents induced by Linfa had velocities up to 35 cm s^-1 in the mixed layer and 20 cm s^-1 in the ocean interior.The near inertial currents were polarized with predominantly clockwise-rotating components,the magnitudes of which were about 10 times larger than the counter-clockwise rotating components.The energy density spectrum showed that the emergence of NIWs resulted in energy redistribution from the diurnal band to the near inertial band.The wavenumber spectrum and the downward/upward current decomposition demonstrated that the NIWs and energy flux propagated mainly downward.The estimated vertical phase velocity and group velocity are 1.44 and 0.48 m h-1,respectively,corresponding to a vertical wavelength of 49.7 m.The e-folding time scale was 7.5 d based on the near inertial kinetic energy in the ocean interior.We found no obvious wave–wave interaction during the decay process of the NIWs.The frequency was blue-shifted,being 0.03 f0 higher than the local inertial frequency,which was caused by the background vorticity.The normal mode analysis suggests that the higher mode plays a dominant role in the propagation stage of the NIWs.展开更多
A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a conti...A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.展开更多
Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carfled out for a wide range of wave oscillating frequencies. ...Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carfled out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from the continuum to free molecule one. The treatment of the os- cillating wall boundary condition and the methods for eval- uating the absorption coefficient and sound wave speed are presented in detail. The simulation results from the UGKS are compared to the Navier-Stokes solutions, the direct sim- ulation Monte Carlo (DSMC) simulation, and experimental measurements. Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32. The cur- rent study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.展开更多
The influences of the three types of reanalysis wind fields on the simulation of three typhoon waves occurred in2015 in offshore China were numerically investigated.The typhoon wave model was based on the simulating w...The influences of the three types of reanalysis wind fields on the simulation of three typhoon waves occurred in2015 in offshore China were numerically investigated.The typhoon wave model was based on the simulating waves nearshore model(SWAN),in which the wind fields for driving waves were derived from the European Centre for Medium-Range Weather Forecasts(ECMWF)Re-Analysis-Interim(ERA-interim),the National Centers for Environmental Prediction climate forecast system version 2(CFSv2)and cross-calibrated multi-platform(CCMP)datasets.Firstly,the typhoon waves generated during the occurrence of typhoons Chan-hom(1509),Linfa(1510)and Nangka(1511)in 2015 were simulated by using the wave model driven by ERA-interim,CFSv2 and CCMP datasets.The numerical results were validated using buoy data and satellite observation data,and the simulation results under the three types of wind fields were in good agreement with the observed data.The numerical results showed that the CCMP wind data was the best in simulating waves overall,and the wind speeds pertaining to ERA-Interim and CCMP were notably smaller than those observed near the typhoon centre.To correct the accuracy of the wind fields,the Holland theoretical wind model was used to revise and optimize the wind speed pertaining to the CCMP near the typhoon centre.The results indicated that the CCMP wind-driven SWAN model could appropriately simulate the typhoon waves generated by three typhoons in offshore China,and the use of the CCMP/Holland blended wind field could effectively improve the accuracy of typhoon wave simulations.展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFB2601100)the National Natural Science Foundation of China(Grant No.52171246)+4 种基金The Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2019491911)the Open Research Foundation of the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP2005)the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC3136)the Natural Science Foundation of Hunan Province(Grant No.2022JJ20041)Educational Science Foundation of Hunan Province(Grant No.23A0265)。
文摘Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.
基金financially supported by the National Key R&D Program of China(No.2022YFC3104205)the National Natural Science Foundation of China(No.42377457).
文摘The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases.
基金Guangdong Basic and Applied Basic Research Foundation(2023A1515011323)National Natural Science Foun-dation of China(42130604,42130605,72293604)+4 种基金Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Waters(GSTOEW)First-Class Discipline Plan of Guangdong Province(080503032101,231420003)Fundamental Research Funds for the Central Universities(202362001,202072010)China Scholarship Council(202208440223)Natural Science Foundation of Shanghai(23ZR1473800)。
文摘To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and the CMA Tropical Cyclone Best Track Dataset.We also adopted the mesoscale forecast model Weather Research and Forecasting model V4.3 for numerical simulation.Most of the previous studies were about typhoon-induced STE and typhoon-induced GWs,while our research focused on the STE caused by typhoon-induced gravity waves.Our analysis shows that most of the time,the gravity wave signal of Typhoon Molave appeared below the tropopause.It was stronger on the east side of the typhoon center(10°-20°N,110°-120°E)than on the west side,suggesting an eastward tilted structure with height increase.When the GWs in the upper troposphere and lower stratosphere region on the west side of the typhoon center broke up,it produced strong turbulence,resulting in stratosphere-troposphere exchange.At this time,the average potential vorticity vertical flux increased with the average ozone mass mixing ratio.The gravity wave events and STE process simulated by the WRF model were basically consistent with the results of ERA5 reanalysis data,but the time of gravity wave breaking was different.This study indicates that after the breaking of the GWs induced by typhoons,turbulent mixing will also be generated,and thus the STE.
文摘Wave fields in Beibu Bay during Typhoon Damrey (2005) were simulated by SWAN wave model through inputting high resolution reanalysis wind fields data, current and water level data. Comparisons for wind input and wave hindcast between observation and simulation show good consistency. Distributions of wave parameters such as wave height, wave period, wave length and wave direction under typhoon wind forcing were given. Also, the directional spectra related to the different position from the typhoon center were discussed. And at last, the variation and characteristics of observed frequency spectrum during the passage of Damrey were presented.
基金The National Natural Science Foundation of China(No.51209040,51279134)the Natural Science Foundation of Jiangsu Province(No.BK2012341)+1 种基金the Fundamental Research Funds for the Central Universities(No.SJLX_0087)the Research Fund of Nanjing Hydraulic Research Institute(No.Y213012)
文摘In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.
基金partly supported by the National Key Research and Development Program of China under contract (Nos. 2017YFA0604901, 2016YFC 1401002 and 2016YFC1402000)the National Natural Science Foundation of China under contract (Nos. 41776 183, 41606024 and 41506033)
文摘In this study, we simulated typhoon waves in the shallow waters around the Zhoushan Islands using the WaveWatch-Ⅲ(WW3) model version 5.16, the latest version released by the National Oceanic and Atmospheric Administration. Specifically, we used in-situ measurements to evaluate the performance of seven packages of input/dissipation source terms in the WW3 model. We forced the WW3 model by wind fields derived from a combination of the parametric Holland model and high-resolution European Center for Medium-Range Weather Forecasts(ECMWF) wind data in a 0.125? grid, herein called H-E winds. We trained the H-E winds by fitting a shape parameter B to buoy-measured observations, which resulted in a smallest root mean square error(RMSE) of 3 m s^(-1) for B, when treated as a constant 0.4. Then, we applied the seven input/dissipation terms of WW3, labelled ST1, ST2, ST2+STAB2, ST3, ST3+STAB3, ST4, and ST6, to simulate the significant wave height(SWH) up to 5 m during typhoons Fungwong and Chan-hom around the Zhoushan Islands. We then compared the SWHs of the simulated waves with those measured by the in-situ buoys. The results indicate that the simulation using ST2 performs best with an RMSE of 0.79 m for typhoon Fung-wong and an RMSE of 1.12 m for typhoon Chan-hom. Interestingly, we found the simulated SWH results to be relatively higher than those of the observations in the area between Hangzhou Bay and the Zhoushan Islands. This behavior is worthy of further investigation in the future.
基金The National Natural Science Foundation of China under contract Nos U1133001,41030855 and 41376027the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A502
文摘In September 2011, Typhoon Nesat passed over a moored array of instruments recording current and temperature in the northern South China Sea(SCS). A wake of baroclinic near-inertial waves(NIWs) commenced after Nesat passed the array. The associated near-inertial currents are surface-intensified and clockwise-polarized. The vertical range of NIWs reached 300 m, where the vertical range is defined as the maximum depth of the horizontal near-inertial velocity 5 cm/s. The current oscillations have a frequency of 0.709 9 cycles per day(cpd), which is 0.025 f higher than the local inertial frequency. The NIWs have an e-folding time-scale of 10 d based on the evolution of the near-inertial kinetic energy. The depth-leading phase of near-inertial currents indicates downward group velocity and energy flux. The estimated vertical phase velocity and group velocity are 0.27 and 0.08 cm/s respectively, corresponding to a vertical wavelength of 329 m. A spectral analysis reveals that NIWs act as a crucial process to redistribute the energy injected by Typhoon Nesat. A normal mode and an empirical orthogonal function analysis indicate that the second mode has a dominant variance contribution of 81%, and the corresponding horizontal phase velocity and wavelength are 3.50 m/s and 420 km respectively. The remarkable large horizontal phase velocity is relevant to the rotation of the earth, and a quantitative analysis suggests that the phase velocity of the NIWs with a blue-shift of 0.025 f overwhelms that of internal gravity waves by a factor of 4.6.
基金Supported by the National Natural Science Foundation of China(Nos.U1706216,41606024,41506023)the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC1407003)+2 种基金the CAS Strategic Priority Project(No.XDA19060202)the NSFC Innovative Group Grant Project(No.41421005)the NSFC-Shandong Joint Fund for Marine Science Research Centers Grant(No.U1406402)
文摘In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model.Various parameters,such as the Holland fitting parameter(B)and the maximum wind radius?,were investigated in sensitivity experiments in the Holland model that affect the wind field construction.Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements.The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied,including wind input,whitecapping,and bottom friction.Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation)and the JONSWAP scheme(dissipation of bottom friction)resulted in good reproduction of the significant wave height of typhoon waves.A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon,while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves.The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.
基金supported by the National Natural Science Foundation of China(Grants No.51239001,51179015,and 51509023)the Open Research Foundation of the Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation,the Ministry of Water Resources(Grant No.2018KJ03)+1 种基金the Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2017SS04)the Key Laboratory of Technology for Safeguarding of Maritime Rights and Interests and Application,State Oceanic Administration(Grant No.SCS1606)
文摘The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea(SCS) was evaluated. A blended wind field, consisting of an interior domain based on Fujita's model and an exterior domain based on Takahashi's model, was used as the driving wind field. The waves driven by Typhoon Kai-tak over the SCS that occurred in 2012 were selected for the numerical simulation research. Sensitivity analyses of time step, grid resolution, and angle resolution were performed in order to obtain optimal model settings. Through sensitivity analyses, it can be found that the time step has a large influence on the results, while grid resolution and angle resolution have a little effect on the results.
基金Ministry of Science and Technology of China(2017YFC1501406)National Key Research and Development Plan Program of China(2017YFA0604500)CMA Youth Founding Program(Q201706&NWPC-QNJJ-201702)
文摘The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required.
基金supported by the National Key Basic Research and Development Project of China (Grant Nos. 2004CB418301,2009CB421503)National Natural Science Foundation of China (Grant No. 40775033)the Chinese Special Scientific Research Project for Public Interest (Grant No.GYHY200806009)
文摘Typhoon Rananim (2004) was one of the severest typhoons landfalling the Chinese mainland from 1996 to 2004. It brought serious damage and induced prodigious economical loss. Using a new generation of mesoscale model, named the Weather Research and Forecasting (WRF) modeling system, with 1.667 km grid horizontal spacing on the finest nested mesh, Rananim was successfully simulated in terms of track, intensity, eye, eyewall, and spiral rainbands. We compared the structures of Rananim to those of hurricanes in previous studies and observations to assess the validity of simulation. The three-dimensional (3D) dynamic and thermal structures of eye and eyewall were studied based on the simulated results. The focus was investigation of the characteristics of the vortex Rossby waves in the inner-core region. We found that the Rossby vortex waves propagate azimuthally upwind against the azimuthal mean tangential flow around the eyewall, and their period was longer than that of an air parcel moving within the azimuthal mean tangential flow. They also propagated outward against the boundary layer inflow of the azimuthal mean vortex. Puthermore, we studied the connection between the spiral potential vorticity (PV) bands and spiral rainbands, and found that the vortex Rossby waves played an important role in the formation process of spiral rainbands.
基金National Natural Science Foundation of China(41375033,41225018)National Basic Research Program of China(973 Program)(2013CB430100)Fundamental Research Funds for Central Universities of Lanzhou University(LZUJBKY-2013-K16)
文摘The formation and development of typhoons are closely related to the disturbed low vortexes at the planetary boundary layer(PBL). The effects of five PBL parameterization schemes(PBL schemes hereinafter) on the trajectory,intensity, and distribution of physical quantities are studied using the mesoscale WRF model on Super Typhoon Sanba(2012) during its initial stage. Results show that the five PBL schemes exhibit significant different effects on the simulated intensity and path. The results simulated by QNSE and ACM2 without the Bogus method are close to the best track data in the numerical experiments. When the Bogus method is adopted, the simulated trajectories improve significantly because the initial field is close to the true data. Among the five PBL schemes, QNSE and ACM2 with the Bogus method present improved simulated path and intensity compared with the three other schemes. This finding indicates that the two schemes deal with the initial PBL process satisfactorily, especially in the formation and development of disturbed low vortexes. The differences in the treatment methods of the five PBL schemes affect the surface layer physical quantities and the middle and upper atmospheres during the middle to late periods of the typhoon.Although QNSE and ACM2 present better simulation results than other schemes, they exhibit a few differences in the internal structure of the typhoon. The results simulated by MYJ are worse, and this method may be unsuitable for studying the formation and development of typhoons.
基金Project supported by the Public Science and Technology Research Funds of Ocean (Grant No. 201105018)the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 41106019)+1 种基金the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2012315)the Young Scientist Fund of State Oceanic Administration,China (Grant No. 2011258)
文摘We use the WAVEWATCH-III model to quantify the effect of oceanic current on typhoon-wave modeling in the East-China-Sea(ECS).Typhoons Jelawat and Saomai in the autumn of 2000 are hindcasted.The oceanic currents in the ECS are mainly constituted of Kuroshio and typhoon-generated currents.The results show distinguishable differences in wave height and wave period under the typhoon conditions.The oceanic current causes the maximum differences,of up to a 0.5 m significant wave height and a 1 s mean wave period.Comparisons between typhoons Jelawat and Saomai show the dependence of the current effect on the typhoon characteristics.
文摘Reasonably accurate predictions of wave heights, current and elevations during storm events are vital information for marine operations and design of offshore and coastal structures in the surrounding seas of Korea Peninsula. Ocean circulation and wind-wave models have traditionally been run separately, but recent researches have identified potentially important interactions between current and wave motions. The coupled tide-surge and the WAM wave models at the atmospheric boundary layer and bottom boundary layer around the Korea Peninsula are applied for the Typhoon Maemi (0314) event. Communication between the models is aehievod using MPI. Results are compared with coastal tide gauges and moored wave buoys and comparisons are also made between wave computations from the coupled model and the independent third generation wave models. Results suggest that applying the fide-surge-coupled model can be an effective means of obtaining wave and storm surge predictions simultaneously.
基金supported by the China-Korea Cooperative Research Project funded by CKJORCa major project titled the development of the marine environmental impact prediction system funded by KIOSTsupported by the project of KISTI for the development of HPC-based management system against national-scale disaster
文摘An integrally coupled wave-tide-surge model was developed and then applied to the simulation of the wave-typhoon surge for the typhoon Isewan (typhoon Vera (5915)), which is the strongest typhoon that has struck Japan and caused incalculable damage. An integrally coupled tide-surge-wave model using identical and homogeneous meshes in an unstructured grid system was used to correctly resolve the physics of wave-circulation interaction in both models. All model components were validated independently. The storm surge and wave properties such as the surge height, the significant wave height, wave period and direction were reproduced reasonably under the meteorological forcing, which was reprocessed to be close to the observations. The resulting modeling system can be used extensively for the prediction of the storm surge and waves and the usual barotropic forecast.
基金supported by the National Key Research and Development Program of China (No. 2016YFC1401103)the National Natural Science Foundation of China (No. 51779236)+1 种基金the International Cooperation Projects (No. INTASAVE ACCC-045)the Open Fund of Shandong Province Key Laboratory of Ocean Engineering。
文摘This study aims to estimate and predict the impact of climate change on typhoons and wave overtopping during typhoon progresses in Qingdao, China. The SWAN wave model is used to simulate wave elements. The scale coefficients of wave overtopping are estimated using an empirical prediction formula. A total of 75 tropical cyclones affected Qingdao from 1949 to 2019. These tropical cyclones can be grouped into eight categories according to typhoon tracks. Typhoon wind speed during Track G is projected to decrease, and those of the other seven typhoon progresses will increase by 0.35% – 0.75% in 2025, 0.69% – 1.5% in 2035, and 1.38% – 3.0% in 2055. The significant wave height and wave overtopping outside the bay are greater than those inside the bay. Among the 506 typical points selected, the maximum values of the significant wave height and wave overtopping inside the bay are mainly distributed in the range of 0 – 2 m and 0 – 60 m^3 km^(-1) s^(-1), respectively. The increments of the significant wave height and wave overtopping of Track F are most obvious. The significant wave height of Track F will increase by 50.5% in 2025, 51.8% in 2035, and 53.4% in 2055. In the 2℃ scenario, the maximum value of wave overtopping of Track F will increase by 21.9% in 2025, 24.3% in 2035, and 29.5% in 2055. In the 4℃ scenario, the maximum value of wave overtopping of Track F will increase by 21.9% in 2025, 24.3% in 2035, and 29.5% in 2055.
基金supported by the National Key Research and Development Program of China (No. 2017YFC1404201)the National Natural Science Foundation of China (Nos. 41706035, 41876027 and 41876029)+2 种基金the Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology (No. 2017A01)China Postdoctoral Science Foundation (No. 2017M622111)the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1606405)
文摘This study examined the characteristics and vertical propagation of near inertial waves(NIWs)induced by Typhoon Linfa(2015),based on in situ observations conducted southeast of Dongsha Islands in the South China Sea.The results demonstrate that the near inertial currents induced by Linfa had velocities up to 35 cm s^-1 in the mixed layer and 20 cm s^-1 in the ocean interior.The near inertial currents were polarized with predominantly clockwise-rotating components,the magnitudes of which were about 10 times larger than the counter-clockwise rotating components.The energy density spectrum showed that the emergence of NIWs resulted in energy redistribution from the diurnal band to the near inertial band.The wavenumber spectrum and the downward/upward current decomposition demonstrated that the NIWs and energy flux propagated mainly downward.The estimated vertical phase velocity and group velocity are 1.44 and 0.48 m h-1,respectively,corresponding to a vertical wavelength of 49.7 m.The e-folding time scale was 7.5 d based on the near inertial kinetic energy in the ocean interior.We found no obvious wave–wave interaction during the decay process of the NIWs.The frequency was blue-shifted,being 0.03 f0 higher than the local inertial frequency,which was caused by the background vorticity.The normal mode analysis suggests that the higher mode plays a dominant role in the propagation stage of the NIWs.
基金supported by the Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting (Grant No.LOMF1101)the Shanghai Typhoon Research Fund (Grant No. 2009ST05)the National Natural Science Foundation of China(Grant No. 40776006)
文摘A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.
基金supported by Hong Kong Research Grant Council(621709,621011)HKUST grants SRFI11SC05 and RPC10SC11the Nanoscience and Nanotechnology Program at HKUST
文摘Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS). The numerical calculations are carfled out for a wide range of wave oscillating frequencies. The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency. The simulation covers the flow regime from the continuum to free molecule one. The treatment of the os- cillating wall boundary condition and the methods for eval- uating the absorption coefficient and sound wave speed are presented in detail. The simulation results from the UGKS are compared to the Navier-Stokes solutions, the direct sim- ulation Monte Carlo (DSMC) simulation, and experimental measurements. Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32. The cur- rent study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.
基金The Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0403the Program for Guangdong Introducing Innovative and Enterpreneurial Teams under contract No.2019ZT08L213the Guangdong Provincial Key Laboratory Project under contract No.2019B121203011
文摘The influences of the three types of reanalysis wind fields on the simulation of three typhoon waves occurred in2015 in offshore China were numerically investigated.The typhoon wave model was based on the simulating waves nearshore model(SWAN),in which the wind fields for driving waves were derived from the European Centre for Medium-Range Weather Forecasts(ECMWF)Re-Analysis-Interim(ERA-interim),the National Centers for Environmental Prediction climate forecast system version 2(CFSv2)and cross-calibrated multi-platform(CCMP)datasets.Firstly,the typhoon waves generated during the occurrence of typhoons Chan-hom(1509),Linfa(1510)and Nangka(1511)in 2015 were simulated by using the wave model driven by ERA-interim,CFSv2 and CCMP datasets.The numerical results were validated using buoy data and satellite observation data,and the simulation results under the three types of wind fields were in good agreement with the observed data.The numerical results showed that the CCMP wind data was the best in simulating waves overall,and the wind speeds pertaining to ERA-Interim and CCMP were notably smaller than those observed near the typhoon centre.To correct the accuracy of the wind fields,the Holland theoretical wind model was used to revise and optimize the wind speed pertaining to the CCMP near the typhoon centre.The results indicated that the CCMP wind-driven SWAN model could appropriately simulate the typhoon waves generated by three typhoons in offshore China,and the use of the CCMP/Holland blended wind field could effectively improve the accuracy of typhoon wave simulations.