期刊文献+
共找到6,193篇文章
< 1 2 250 >
每页显示 20 50 100
Near ground wind characteristics during typhoon Meari:Turbulence intensities, gust factors, and peak factors 被引量:1
1
作者 WANG Xu HUANG Peng +1 位作者 YU Xian-feng HUANG Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2421-2430,共10页
Wind data were collected during the 2011 typhoon Meari at heights of 10, 20, 30, and 40 m above the ground using a 40 m high anemometer tower in the coastal area near Shanghai Pudong International Airport. Wind speeds... Wind data were collected during the 2011 typhoon Meari at heights of 10, 20, 30, and 40 m above the ground using a 40 m high anemometer tower in the coastal area near Shanghai Pudong International Airport. Wind speeds and directions, turbulence intensities, gust factors, and peaks were analyzed using the time records of wind speed. The results show that turbulence intensity components in longitudinal, lateral, and vertical directions decrease with mean wind speed, regardless of elevations, and the turbulence intensities are in a linear relationship with mean wind speeds. The ratios of three turbulence intensity components(i.e. Iu, Iv, Iw) at heights of 10, 20 and 40 m were calculated and equal to be 1:0.88:0.50, 1:0.84:0.57, and 1:0.9:0.49, respectively. In addition, the gust factors in three directions exhibit a reduction with increasing mean wind speed. The peak factors at different heights show a similar trend and slightly decrease with mean wind speed; average peak factors for all 10-min data from Typhoon Meari are 2.43, 2.48, and 2.47, respectively. 展开更多
关键词 typhoon meari wind characteristics TURBULENCE intensity GUST FACTOR peak FACTOR
下载PDF
A geomorphological response of beaches to Typhoon Meari in the eastern Shandong Peninsula in China 被引量:4
2
作者 DING Dong YANG Jichao +5 位作者 LI Guangxue DADA Olusegun A GONG Lixin WANG Nan WANG Xiangdong ZHANG Bin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第9期126-135,共10页
Eight representative beach profiles on the eastern coast of the Shandong Peninsula are observed and measured in 2011 and 2012 to determine the coastal processes under the lower tropical wind speed condition and the be... Eight representative beach profiles on the eastern coast of the Shandong Peninsula are observed and measured in 2011 and 2012 to determine the coastal processes under the lower tropical wind speed condition and the beach response to and recovery from the tropical storm Meari in a rare typhoon region. The results show that it is the enhancement and directional change of cross-shore and longshore sediment transports caused by Meari that leads to the beach morphological changes, and most of the sediment transports occur during the pre-Meari landing phase. The erosional scarp formation and the berm or beach face erosion are the main geomorphological responses of the beaches to the storm. The storm characteristics are more important than the beach shapes in the storm response process of the beaches on Shandong Peninsula. The typhoon is a fortuitous strong dynamic event, and the effect on the dissipative beach is more obvious than it is on the reflective beach in the study region. Furthermore, the beach trend is the main factor that controlls the storm effect intensity, and it is also closely related to the recovery of the beach profiles. 展开更多
关键词 BEACH typhoon geomorphological response Shandong Peninsula in China
下载PDF
Spatial distribution of shallow landslides caused by Typhoon Lekima in 2019 in Zhejiang Province, China 被引量:1
3
作者 CUI Yulong YANG Liu +1 位作者 XU Chong ZHENG Jun 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1564-1580,共17页
In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous ter... In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area. 展开更多
关键词 typhoon rainfall Landslide characteristics Spatial distribution Southeast coastal region
下载PDF
Typhoon-Induced Ocean Waves and Stokes Drift:A Case Study of Typhoon Mangkhut(2018)
4
作者 WU Zhi-yuan GAO Kai +6 位作者 CHEN Jie ZHANG Hao-jian DENG Bin JIANG Chang-bo LIU Yi-zhuang LYU Zhao YAN Ren 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期711-724,共14页
Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for Mediu... Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects. 展开更多
关键词 Stokes drift typhoon waves Ekman-Stokes transport vertical mixing typhoon Mangkhut
下载PDF
Influence of typhoon MITAG on the Kuroshio intrusion in the Luzon Strait during early fall 2019
5
作者 Meng Liu Fukang Qi +2 位作者 Yunpeng Lin Yuping Yang Jingping Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第9期70-80,共11页
Typhoons in the western Pacific have a significant impact on the transport of heat,salt and particles through the Luzon Strait.However,there are very limited field observations of this impact because of extreme diffic... Typhoons in the western Pacific have a significant impact on the transport of heat,salt and particles through the Luzon Strait.However,there are very limited field observations of this impact because of extreme difficulties and even dangers for ship-based measurements during the rough weather.Here,we present the preliminary results from analyzing a dataset collected by a glider deployed west of the Luzon Strait a few days prior to the arrival of typhoon MITAG.The gilder data revealed an abnormally salinity(>34.8)subsurface water apparently sourced from Kuroshio intrusion during the typhoon.When typhoon MITAG traveled on the east of the Luzon Strait,the positive wind stress curl strengthened the cyclonic eddy and weakened the anti-cyclonic eddy.This led to a slowdown of Kuroshio and made its intrusion easier.The main axis of the Kuroshio at the northern part of the strait shifted westward after the typhoon and did not return to its original position until a week later.The Ekman transport from persistent northerly wind of typhoon MITAG was significant,but its importance in enhancing the Kuroshio intrusion is only secondary relative to the eddies variations. 展开更多
关键词 typhoon GLIDER Kuroshio intrusion Luzon Strait
下载PDF
Limited Sea Surface Temperature Cooling Due to the Barrier Layer Promoting Super Typhoon Mangkhut(2018)
6
作者 Huipeng WANG Jiagen LI +8 位作者 Junqiang SONG Liang SUN Fu LIU Han ZHANG Kaijun REN Huizan WANG Chunming WANG Jinrong ZHANG Hongze LENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2156-2172,共17页
This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)... This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018. 展开更多
关键词 sea surface cooling mixed-layer depth barrier layer typhoon
下载PDF
Analysis of Sea Surface Temperature Cooling in Typhoon Events Passing the Kuroshio Current
7
作者 HU Yuyi SHAO Weizeng +3 位作者 SHEN Wei ZUO Juncheng JIANG Tao HU Song 《Journal of Ocean University of China》 CAS CSCD 2024年第2期287-303,共17页
The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to s... The aim of this study is to investigate the sea surface temperature(SST) cooling as typhoons pass the Kuroshio Current.A numerical circulation model,denoted as the Stony Brook Parallel Ocean Model(sbPOM),was used to simulate the SST,which includes four wave-induced effect terms(i.e.,radiation stress,nonbreaking waves,Stokes drift,and breaking waves) simulated using the third-generation wave model,called WAVEWATCH-Ⅲ(WW3).The significant wave height(SWH) measurements from the Jason-2 altimeter were used to validate the WW3-simulated results,yielding a root mean square error(RMSE) of less than 0.50 m and a correlation coefficient(COR) of approximately 0.93.The water temperature measured from the Advanced Research and Global Observation Satellite was applied to validate the model simulation.Accordingly,the RMSE of the SST is 0.92℃ with a COR of approximately 0.99.As revealed in the sbPOM-simulated SST fields,a reduction in the SST at the Kuroshio Current region was observed as a typhoon passed,although the water temperature of the Kuroshio Current is relatively high.The variation of the SST is consistent with that of the current,whereas the maximum SST lagged behind the occurrence of the peak SWH.Moreover,the Stokes drift plays an important role in the SST cooling after analyzing four wave-induced terms in the background of the Kuroshio Current.The sensitivity experiment also showed that the accuracy of the water temperature was significantly reduced when including breaking waves,which play a negative role in the inside part of the ocean.The variation in the mean mixing layer depth(MLD) showed that a typhoon could enhance the mean MLD in the Kuroshio Current area in September and October,whereas a typhoon has little influence on the mean MLD in the Kuroshio Current area in May.Moreover,the mean MLD rapidly decreased with the weakening of the strong wind force and wave-induced effects when a typhoon crossed the Kuroshio Current. 展开更多
关键词 typhoon wave sea surface temperature Kuroshio Current
下载PDF
Role of Stokes Drift in Ocean Dynamics Under Typhoon Conditions in the Bohai Sea
8
作者 LI Haoqian WAN Kai +2 位作者 WANG Menghan DENG Zeng’an CAO Yu 《Journal of Ocean University of China》 CAS CSCD 2024年第1期33-45,共13页
The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated... The effect of Stokes drift production(SDP),which includes Coriolis-Stokes forcing,Langmuir circulation,and Craik-Lei-bovich vortexes,on the upper ocean during typhoon passage in the Bohai Sea(BS),China,is investigated by using a coupled wave-current model.The role of SDP in turbulent mixing and the further dynamics during the entire typhoon period are comprehensively stud-ied.Experimental results show that SDP greatly increases turbulent mixing at all depths under typhoon conditions by up to seven times that under normal weather conditions.SDP generally strengthens sea surface cooling by more than 0.4℃,with the maximum reduction in sea surface temperature(SST)at the during-typhoon stage exceeding 2℃,which is approximately seven times larger than that under normal weather conditions.The SDP-induced decrease in current speed can exceed 0.2ms^(-1),and the change in current direction is generally opposite the wind direction.These results suggest that Stokes drift depresses the effect of strong winds on currents by intensifying turbulent mixing.Mixed layer depth(MLD)is distinctly increased by O(1)during typhoons due to SDP and can deepen by more than 5m.In addition,the continuous effects of SDP on SST,current,and MLD at the after-typhoon stage indi-cate a hysteretic response between SDP and typhoon actions. 展开更多
关键词 Stokes drift production Langmuir turbulence rurbulent mixing typhoon coupled model
下载PDF
Probability Distribution Characteristics of Strong Nonlinear Waves Under Typhoon Conditions in the Northern South China Sea
9
作者 GONG Yijie XIE Botao +2 位作者 FU Dianfu WANG Zhifeng PANG Liang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期583-593,共11页
The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields ... The generation and propagation mechanism of strong nonlinear waves in the South China Sea is an essential research area. In this study, the third-generation wave model WAVEWATCH Ⅲ is employed to simulate wave fields under extreme sea states. The model, integrating the ST6 source term, is validated against observed data, demonstrating its credibility. The spatial distribution of the occurrence probability of strong nonlinear waves during typhoons is shown, and the waves in the straits and the northeastern part of the South China Sea show strong nonlinear characteristics. The high-order spectral model HOS-ocean is employed to simulate the random wave surface series beneath five different platform areas. The waves during the typhoon exhibit strong nonlinear characteristics, and freak waves exist. The space-varying probability model is established to describe the short-term probability distribution of nonlinear wave series. The exceedance probability distributions of the wave surface beneath different platform areas are compared and analyzed. The results show that with an increase in the platform area, the probability of a strong nonlinear wave beneath the platform increases. 展开更多
关键词 strong nonlinear wave typhoon wave series probability distribution model exceedance probability
下载PDF
An improved typhoon monitoring model based on precipitable water vapor and pressure
10
作者 Junyu Li Haojie Li +7 位作者 Lilong Liu Jiaqing Chen Yibin Yao Mingyun Hu Liangke Huang Fade Chen Tengxu Zhang Lv Zhou 《Geodesy and Geodynamics》 EI CSCD 2024年第3期276-290,共15页
The potential of monitoring the movement of typhoons using the precipitable water vapor(PWV) has been confirmed. However, monitoring the movement of typhoon is focused on PWV, making it difficult to describe the movem... The potential of monitoring the movement of typhoons using the precipitable water vapor(PWV) has been confirmed. However, monitoring the movement of typhoon is focused on PWV, making it difficult to describe the movement of a typhoon in detail minutely and resulting in insufficient accuracy. Hence,based on PWV and meteorological data, we propose an improved typhoon monitoring mode. First, the European Centre for Medium-Range Weather Forecasts Reanalysis 5-derived PWV(ERA5-PWV) and the Global Navigation Satellite System-derived PWV(GNSS-PWV) were compared with the reference radiosonde PWV(RS-PWV). Then, using the PWV and atmospheric parameters derived from ERA5, we discussed the anomalous variations of PWV, pressure(P), precipitation, and wind speed during different typhoons. Finally, we compiled a list of critical factors related to typhoon movement, PWV and P. We developed an improved multi-factor typhoon monitoring mode(IMTM) with different models(i.e.,IMTM-I and IMTM-II) in different cases with a higher density of GNSS observation or only Numerical Weather Prediction(NWP) data. The IMTM was evaluated through the reference movement speeds of HATO and Mangkhut from the China Meteorological Observatory Typhoon Network(CMOTN). The results show that the root mean square(RMS) of the IMTM-I is 1.26 km/h based on ERA5-P and ERA5-PWV,and the absolute bias values are mostly within 2 km/h. Compared with the models considering the single factor ERA5-P/ERA5-PWV, the RMS of the IMTM-I is improved by 26.3% and 38.5%, respectively. The IMTM-II model manifests a residual of only 0.35 km/h. Compared with the single-factor model based on GNSS-PWV/P, the residual of the IMTM-II model is reduced by 90.8% and 84.1%, respectively. These results propose that the typhoon movement monitoring approach combining PWV and P has evident advantages over the single-factor model and is expected to supplement traditional typhoon monitoring. 展开更多
关键词 typhoon GNSS/ERA5 PWV PRESSURE MONITORING Improved model
下载PDF
Trend of Storm Surge Induced by Typical Landfall Super Typhoons During 1975–2021 in the Eastern China Sea
11
作者 LUO Feng WANG Yi +3 位作者 TAO Aifeng SHI Jian WANG Yongzhi ZHANG Chi 《Journal of Ocean University of China》 CAS CSCD 2024年第2期277-286,共10页
Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast ... Climate change affects the activity of global and regional tropical cyclones(TCs).Among all TCs,typical super typhoons(STYs)are particularly devastating because they maintain their intensity when landing on the coast and thus cause casualties,economic losses,and environmental damage.Using a 3D tidal model,we reconstructed the typhoon(TY)wind field to simulate the storm surge induced by typical STYs.The TY activity was then analyzed using historical data.Results showed a downtrend of varying degrees in the annual frequency of STYs and TCs in the Western North Pacific(WNP)Basin,with a significant trend change observed for TCs from 1949 to 2021.A large difference in the interannual change in frequency was found between STYs and TCs in the WNP and Eastern China Sea(ECS).Along the coast of EC,the frequency of landfall TCs showed a weak downtrend,and the typical STYs showed reverse micro growth with peak activity in August.Zhejiang,Fujian,and Taiwan were highly vulnerable to the frontal hits of typical STYs.Affected by climate change,the average lifetime maximum intensity(LMI)locations and landfall locations of typical STYs in the ECS basin showed a significant poleward migration trend.In addition,the annual average LMI and accumulated cyclone energy showed an uptrend,indicating the increasing severity of the disaster risk.Affected by the typical STY activity in the ECS,the maximum storm surge area also showed poleward migration,and the coast of North China faced potential growth in high storm surge risks. 展开更多
关键词 storm surge super typhoons tropical cyclones eastern China Sea poleward migration
下载PDF
South China Sea Typhoon Hagibis enhanced Xinfengjiang Reservoir seismicity
12
作者 Peng Zhang Xinlei Sun +2 位作者 Yandi Zeng Zhuo Xiao Runqing Huang 《Earthquake Science》 2024年第3期210-223,共14页
There was an evident increase in the number of earthquakes in the Xinfengjiang Reservoir from June to July 2014 after the landing of Typhoon Hagibis.To understand the spatial and temporal evolution of this microseismi... There was an evident increase in the number of earthquakes in the Xinfengjiang Reservoir from June to July 2014 after the landing of Typhoon Hagibis.To understand the spatial and temporal evolution of this microseismicity,we built a high-precision earthquake catalog for 2014 and relocated 2275 events using recently developed methods for event picking and catalog construction.Seismicity occurred in the southeastern part of the reservoir,with the preferred fault plane orientation aligned along the Heyuan Fault.The total seismic energy peaked when the typhoon passed through the reservoir,and seismicity correlated with typhoon energy.In contrast,a limited seismic response was observed during the later Typhoon Rammasun.Combining data regarding the water level in the Xinfengjiang Reservoir and seismicity frequency changes in the Taiwan region during these two typhoon events,we suggest that typhoon activity may increase microseism energy by impacting fault stability around the Xinfengjiang Reservoir.Whether a fault can be activated also depends on how close the stress accumulation is to its failure point. 展开更多
关键词 typhoon seismicity analysis earthquake detection spatio-temporal evolution characteristics MICROSEISMS
下载PDF
The impact of typhoons on the biogeochemistry of dissolved organic matter in eutrophic bays in northwestern South China Sea
13
作者 Xuan Lu Qibin Lao +3 位作者 Fajin Chen Guangzhe Jin Chunqing Chen Qingmei Zhu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期15-31,共17页
Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To addres... Highly productive estuaries facilitate intense decomposition of dissolved organic matter(DOM) as a carbon source.However,the specific impacts of typhoons on DOM decomposition in eutrophic bays remain unclear.To address this issue,we investigated the spectral characteristics of DOM before and after Typhoon Ewiniar in Zhanjiang B ay,a eutrophic semi-enclosed bay in the northwestern South China Sea.The results revealed that intense microbial decomposition of DOM occurred during the pre-typhoon period because high nutrient inputs facilitated the mobilization of DOM in the bay.However,the intrusion of external seawater induced by the typhoon diluted the nutrient levels in Zhanjiang B ay,reducing the impact of microbial decomposition on DOM during the post-typhoon perio d.Nevertheless,the net addition of DOM occurred in Zhanjiang Bay during the post-typhoon period,possibly because of the decomposition of particulate organic matter(POM) and desorption of particulate matter.In addition,an increase in apparent oxygen utilization,a decrease in DO saturation and the reduced level of Chl a indicated that organic matter(OM) decomposition was enhanced and OM decomposition shifted to POM decomposition in Zhanjiang Bay after the typhoon.Overall,our study highlighted the shift in the intense OM decomposition from DOM to POM decomposition before and after typhoons in eutrophic bays,providing new insights into the response of typhoons to biogeo chemistry. 展开更多
关键词 dissolved organic matter optical analyses decomposition typhoon northwestern South China Sea
下载PDF
An Analysis of the Low Moving Speed of Landfalling Typhoon In-Fa in 2021
14
作者 郑丽娜 吕新刚 李瑞 《Journal of Tropical Meteorology》 SCIE 2024年第1期51-60,共10页
The movement speed of Typhoon In-Fa(2021)was notably slow,at 10 km h-1or less,for over 20 hours following its landfall in Zhejiang,China,in contrast to other typhoons that have made landfall.This study examines the fa... The movement speed of Typhoon In-Fa(2021)was notably slow,at 10 km h-1or less,for over 20 hours following its landfall in Zhejiang,China,in contrast to other typhoons that have made landfall.This study examines the factors contributing to the slow movement of Typhoon In-Fa,including the steering flow,diabatic heating,vertical wind shear(VWS),and surface synoptic situation,by comparing it with Typhoons Yagi(2018)and Rumbia(2018)which followed similar tracks.The findings reveal that the movement speed of Typhoons Yagi and Rumbia is most closely associated with their respective 500 h Pa environmental winds,with a steering flow of 10^(-12)m s^(-1).In contrast,Typhoon InFa’s movement speed is most strongly correlated with the 850 h Pa environmental wind field,with a steering flow speed of only 2 m s^(-1).Furthermore,as Typhoon In-Fa moves northwest after landfall,its intensity is slightly greater than that of Typhoons Yagi and Rumbia,and the pressure gradient in front of Typhoon In-Fa is notably smaller,leading to its slow movement.Additionally,the precipitation distribution of Typhoon In-Fa differs from that of the other two typhoons,resulting in a weak asymmetry of wavenumber-1 diabatic heating,which indirectly affects its movement speed.Further analysis indicates that VWS can alter the typhoon’s structure,weaken its intensity,and ultimately impact its movement. 展开更多
关键词 landfalling typhoon steering flow diabatic heating VWS
下载PDF
Assimilating FY-4A AGRI Radiances with a Channel-Sensitive Cloud Detection Scheme for the Analysis and Forecasting of Multiple Typhoons
15
作者 Feifei SHEN Aiqing SHU +4 位作者 Zhiquan LIU Hong LI Lipeng JIANG Tao ZHANG Dongmei XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期937-958,共22页
This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West... This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West Pacific Ocean using the 3DVar data assimilation(DA)method along with the WRF model.A channel-sensitive cloud detection scheme based on the particle filter(PF)algorithm is developed and examined against a cloud detection scheme using the multivariate and minimum residual(MMR)algorithm and another traditional cloud mask–dependent cloud detection scheme.Results show that both channel-sensitive cloud detection schemes are effective,while the PF scheme is able to reserve more pixels than the MMR scheme for the same channel.In general,the added value of AGRI radiances is confirmed when comparing with the control experiment without AGRI radiances.Moreover,it is found that the analysis fields of the PF experiment are mostly improved in terms of better depicting the typhoon,including the temperature,moisture,and dynamical conditions.The typhoon track forecast skill is improved with AGRI radiance DA,which could be explained by better simulating the upper trough.The impact of assimilating AGRI radiances on typhoon intensity forecasts is small.On the other hand,improved rainfall forecasts from AGRI DA experiments are found along with reduced errors for both the thermodynamic and moisture fields,albeit the improvements are limited. 展开更多
关键词 FY-4A AGRI radiance particle filter multiple typhoons data assimilation numerical weather prediction
下载PDF
A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation
16
作者 TANG Jun QIN Wanting +1 位作者 PAN Qingtao LAO Songyang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期666-678,共13页
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon... Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather. 展开更多
关键词 flight scheduling optimization deep multimodal fusion multitasking trajectory prediction typhoon weather flight cancellation prediction reliability
下载PDF
Gravity Wave Activity and Stratosphere-Troposphere Exchange During Typhoon Molave(2020)
17
作者 HUANG Dong WAN Ling-feng +3 位作者 WAN Yi-shun CHANG Shu-jie MA Xin ZHAO Kai-jing 《Journal of Tropical Meteorology》 SCIE 2024年第3期306-326,共21页
To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data prov... To investigate the stratosphere-troposphere exchange(STE)process induced by the gravity waves(GWs)caused by Typhoon Molave(2020)in the upper troposphere and lower stratosphere,we analyzed the ERA5 reanalysis data provided by the European Centre for Medium-Range Weather Forecasts and the CMA Tropical Cyclone Best Track Dataset.We also adopted the mesoscale forecast model Weather Research and Forecasting model V4.3 for numerical simulation.Most of the previous studies were about typhoon-induced STE and typhoon-induced GWs,while our research focused on the STE caused by typhoon-induced gravity waves.Our analysis shows that most of the time,the gravity wave signal of Typhoon Molave appeared below the tropopause.It was stronger on the east side of the typhoon center(10°-20°N,110°-120°E)than on the west side,suggesting an eastward tilted structure with height increase.When the GWs in the upper troposphere and lower stratosphere region on the west side of the typhoon center broke up,it produced strong turbulence,resulting in stratosphere-troposphere exchange.At this time,the average potential vorticity vertical flux increased with the average ozone mass mixing ratio.The gravity wave events and STE process simulated by the WRF model were basically consistent with the results of ERA5 reanalysis data,but the time of gravity wave breaking was different.This study indicates that after the breaking of the GWs induced by typhoons,turbulent mixing will also be generated,and thus the STE. 展开更多
关键词 gravity wave typhoon stratosphere-troposphere exchange STE upper troposphere and lower stratosphere UTLS
下载PDF
TYPhoon 9410多功能激光扫描成像系统 被引量:2
18
作者 宁萍 许玉杰 +2 位作者 张友九 王道锦 胡明江 《激光杂志》 CAS CSCD 北大核心 2011年第4期48-49,共2页
Typhoon 9410是由美国Amersham公司生产的一种多功能激光扫描成像系统,可进行放射性样品、多色荧光或化学发光样品的成像。本文简要介绍了Typhoon 9410成像系统的仪器组成、工作原理、功能应用、操作步骤和性能特点等,以便更多科研工作... Typhoon 9410是由美国Amersham公司生产的一种多功能激光扫描成像系统,可进行放射性样品、多色荧光或化学发光样品的成像。本文简要介绍了Typhoon 9410成像系统的仪器组成、工作原理、功能应用、操作步骤和性能特点等,以便更多科研工作者能了解该仪器,使之更好地为教学科研服务。 展开更多
关键词 typhoon 9410 放射自显影 激光扫描 荧光成像
下载PDF
Wave spectrum characteristics under typhoon wind forcing in coastal waters of the Beibu Bay through numerical simulation by SWAN 被引量:4
19
作者 周良明 王爱方 +2 位作者 王智峰 郭佩芳 高劲松 《Marine Science Bulletin》 CAS 2010年第2期1-14,共14页
Wave fields in Beibu Bay during Typhoon Damrey (2005) were simulated by SWAN wave model through inputting high resolution reanalysis wind fields data, current and water level data. Comparisons for wind input and wav... Wave fields in Beibu Bay during Typhoon Damrey (2005) were simulated by SWAN wave model through inputting high resolution reanalysis wind fields data, current and water level data. Comparisons for wind input and wave hindcast between observation and simulation show good consistency. Distributions of wave parameters such as wave height, wave period, wave length and wave direction under typhoon wind forcing were given. Also, the directional spectra related to the different position from the typhoon center were discussed. And at last, the variation and characteristics of observed frequency spectrum during the passage of Damrey were presented. 展开更多
关键词 wave spectrum typhoon SWAN Beibu Bay wave field
下载PDF
Comparable study on typhoon and strong northern wind characteristics of the Runyang Suspension Bridge based on field tests 被引量:4
20
作者 王浩 李爱群 +2 位作者 郭彤 谢静 胡若玫 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期99-103,共5页
The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measur... The strong wind characteristics of the Runyang Suspension Bridge( RSB) including the wind speed and direction, the turbulence intensity, the turbulence integral length and power spectrum are analyzed based on measurement data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS)of the RSB and field tests during strong winds. The differences between the typhoon and the strong northern wind are especially studied. It is found that the mean wind speed of the strong northern wind is a little smaller and the mean wind direction is more stable than that of the typhoon. The turbulence intensity of both the typhoon and the strong northern wind is greater than the values suggested in Chinese code, and the turbulence integral length difference between the typhoon and a strong northern wind is not clear. As for the along-wind turbulence power spectrum, the spectrum of the strong northern wind can fit the Kaimal spectrum better than that of the typhoon. The obtained results can provide measurement data for founding a strong wind characteristic database and determining the strong wind characteristic parameter values of the RSB. 展开更多
关键词 suspension bridge typhoon northern wind wind characteristics field test structural health monitoring system
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部