Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor...Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.展开更多
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b...Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.展开更多
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand...Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo...The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.展开更多
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit...Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.展开更多
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept...BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.展开更多
BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th...BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.展开更多
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r...Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.展开更多
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu...Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.展开更多
BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicate...BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2(LILRB2)in GC.We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands,angiopoietin-like protein 2(ANGPTL2)and human leukocyte antigen-G(HLA-G),contributing to immunosuppression.AIM To investigate the relationship between CSF3/CSF3R and LILRB2,as well as its ligands ANGPTL2 and HLA-G,in GC.METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed,stratifying patients by CSF3R expression.Differentially expressed genes and immune checkpoints were evaluated.Immunohistochemistry(IHC)was performed on GC tissues.Correlation analyses of CSF3R,LILRB2,ANGPTL2,and HLA-G were conducted using The Cancer Genome Atlas data and IHC results.GC cells were treated with CSF3,and expression levels of LILRB2,ANGPTL2,and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting.RESULTS Among 122 upregulated genes in high CSF3R expression groups,LILRB2 showed the most significant increase.IHC results indicated high expression of LILRB2(63.0%),ANGPTL2(56.5%),and HLA-G(73.9%)in GC tissues.Strong positive correlations existed between CSF3R and LILRB2,ANGPTL2,and HLA-G mRNA levels(P<0.001).IHC confirmed positive correlations between CSF3R and LILRB2(P<0.001),and HLA-G(P=0.010),but not ANGPTL2(P>0.05).CSF3 increased LILRB2,ANGPTL2,and HLA-G expression in GC cells.Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression,impacting CSF3’s regulatory effects.CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands,with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.展开更多
BACKGROUND Depression significantly threatens human health.Purinergic receptors are reported to be associated with depression.However,there is no bibliometric research in this field have been published.AIM To provide ...BACKGROUND Depression significantly threatens human health.Purinergic receptors are reported to be associated with depression.However,there is no bibliometric research in this field have been published.AIM To provide some reference for the further research in the field of purinergic receptors and depression utilizing bibliometric analysis.METHODS Relevant researches were retrieved from the Web of Science Core Collection database.The period of the search was from January 1,2003 to December 31,2023.The CiteSpace(6.2.R7)and VOSviewer(1.6.19)were applied to identify the main contributors of countries,authors,institutions,references and journals.Besides,we evaluate keywords to assess the hotspots and trends over the previous 2 decades.RESULTS Totally,247 articles were identified,showing an increasing trend over time.The most productive country,institution,and journal in this field are China,Harvard University,and Biological Psychiatry,respectively.Liang SD and Rodrigues,Ana Lucia S were the most prolific authors.Burnstock G ranked first among the cited authors.The cooperation among countries and disciplines is crucial.The P2X7 receptor provides promising prospects for treating depression and further studies are warranted to validate the scope and significance of depression therapeutic strategies.CONCLUSION This study provides an overview of the worldwide research status and future trends in purinergic receptors and depression.P2X7 receptor is considered an appropriate target for the treatment of depression,as well as neurological diseases.It is implied that based on purinergic system,the future prospects for interventions aimed at depression treatment are promising,showing the way for both augmentation strategies and new drug treatments in the context of the pharmacology of depression.展开更多
This editorial discusses Christodoulidis et al's article,which appeared in the most recent edition.The clinical trials have demonstrated the programmed cell death receptor 1(PD-1)inhibitor Pembrolizumab involved c...This editorial discusses Christodoulidis et al's article,which appeared in the most recent edition.The clinical trials have demonstrated the programmed cell death receptor 1(PD-1)inhibitor Pembrolizumab involved combination therapy can improve the efficacy of advanced gastric cancer(AGC).Pembrolizumab combined with chemotherapy can enhance its sensitivity,and further eliminate tumor cells that develop resistance to chemotherapy.The combination of Pembrolizumab and Trastuzumab targeting human epidermal growth factor receptor 2 showed improved prognosis.The overall toxic effects of Pembrolizumab are significantly lower than traditional chemotherapy,and the safety is controllable.PD-1 inhibitor Pembrolizumab sheds a light on the treatment of AGC and brings new hope to the clinical practice.展开更多
The epidermal growth factor receptor(EGFR)is a transmembrane glycoprotein that plays a crucial role in signal transduction and cellular responses.This review explores the function of EGFR in kidney physiology and its ...The epidermal growth factor receptor(EGFR)is a transmembrane glycoprotein that plays a crucial role in signal transduction and cellular responses.This review explores the function of EGFR in kidney physiology and its implications for various kidney diseases.EGFR signaling is essential for kidney function and repair mechanisms,and its dysregulation significantly impacts both acute and chronic kidney conditions.The review discusses the normal distribution of EGFR in kidney tubular segments,the mechanism of its activation and inhibition,and the therapeutic potential of EGFR-targeting antagonists and ligands.Additionally,it explores the pathophysiological characteristics observed in rodent models of kidney diseases through pharmacological and genetic inhibition of EGFR,highlighting therapeutic challenges and limitations such as species differences,variability in disease models,and potential adverse effects.Overall,the findings underscore the multifaceted role of EGFR in kidney diseases,influencing inflammation,fibrosis,and tissue injury.This complex involvement suggests that targeting EGFR may be a beneficial therapeutic strategy for managing these conditions,potentially mitigating inflammation and fibrosis while promoting tissue repair.展开更多
BACKGROUND The global prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has continued to increase annually.Recent studies have indicated that inhibition of metabotropic glutamate receptor 5(...BACKGROUND The global prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has continued to increase annually.Recent studies have indicated that inhibition of metabotropic glutamate receptor 5(mGluR5)may alleviate hepatic steatosis.However,the precise mechanism warrants further exploration.AIM To investigate the potential mechanism by which mGluR5 attenuates hepatocyte steatosis in vitro and in vivo.METHODS Free fatty acids(FFAs)-stimulated HepG2 cells were treated with the mGluR5 antagonist MPEP and the mGluR5 agonist CHPG.Oil Red O staining and a triglyceride assay kit were used to evaluate lipid content.Western blot analysis was conducted to detect the expression of the autophagy-associated proteins p62 and LC3-II,as well as the expression of the key signaling molecules AMPK and ULK1,in the treated cells.To further elucidate the contributions of autophagy and AMPK,we used chloroquine(CQ)to inhibit autophagy and compound C(CC)to inhibit AMPK activity.In parallel,wild-type mice and mGluR5 knockout(KO)mice fed a normal chow diet or a high-fat diet(HFD)were used to evaluate the effect of mGluR5 inhibition in vivo.RESULTS mGluR5 inhibition by MPEP attenuated hepatocellular steatosis and increased LC3-II and p62 protein expression.The autophagy inhibitor CQ reversed the effects of MPEP.In addition,MPEP promoted AMPK and ULK1 expression in HepG2 cells exposed to FFAs.MPEP treatment led to the nuclear translocation of transcription factor EB,which is known to promote p62 expression.This effect was negated by the AMPK inhibitor CC.mGluR5 KO mice presented reduced body weight,improved glucose tolerance and reduced hyperlipidemia when fed a HFD.Additionally,the livers of HFD-fed mGluR5 KO mice presented increases in LC3-II and p62.CONCLUSION Our results suggest that mGluR5 inhibition promoted autophagy and reduced hepatocyte steatosis through activation of the AMPK signaling pathway.These findings reveal a new functional mechanism of mGluR5 as a target in the treatment of MASLD.展开更多
BACKGROUND With accumulating evidence showing a benefit in the renal and cardiovascular systems,diabetes guidelines recommend that patients with diabetes and chronic kidney disease(CKD)be treated with sodium-glucose c...BACKGROUND With accumulating evidence showing a benefit in the renal and cardiovascular systems,diabetes guidelines recommend that patients with diabetes and chronic kidney disease(CKD)be treated with sodium-glucose cotransporter-2 inhibitor(SGLT2i)and/or glucagon like peptide-1 receptor agonists(GLP-1RAs)for renal protection.The real-world efficacy of the two medications on the urinary albumin-creatinine ratio(UACR)and estimated glomerular filtration rate(eGFR)remains to be explored.AIM To evaluate the SGLT2i and GLP-1RA application rates and UACR alterations after intervention in a real-world cohort of patients with diabetes.METHODS A cohort of 5482 patients with type 2 diabetes were enrolled and followed up at the Integrated Care Clinic for Diabetes of Peking University First Hospital for at least 6 months.Propensity score matching was performed,and patients who were not recommended for GLP-1RA or SGLT2i with comparable sex categories and ages were assigned to the control group at a 1:2 ratio.Blood glucose,body weight,UACR and eGFR were evaluated after 6 months of treatment in real-world clinical practice.RESULTS A total of 139(2.54%)patients started GLP-1RA,and 387(7.06%)received SGLT2i.After 6 months,the variations in fasting blood glucose,prandial blood glucose,and glycosylated hemoglobin between the GLP-1RA group and the SGLT2i and control groups were not significantly different.UACR showed a tendency toward a greater reduction compared with the control group,although this difference was not statistically significant(GLP-1RA vs control,-2.20 vs 30.16 mg/g,P=0.812;SGLT2i vs control,-20.61 vs 12.01 mg/g,P=0.327);eGFR alteration also showed no significant differences.Significant weight loss was observed in the GLP-1RA group compared with the control group(GLP-1RA vs control,-0.90 vs 0.27 kg,P<0.001),as well as in the SGLT2i group(SGLT2i vs control,-0.59 vs-0.03 kg,P=0.010).CONCLUSION Compared with patients who received other glucose-lowering drugs,patients receiving SGLT2i or GLP-1RAs presented significant weight loss,a decreasing trend in UACR and comparable glucose-lowering effects in realworld settings.展开更多
BACKGROUND The combination of anti-epidermal growth factor receptor(EGFR)therapy and chemotherapy is currently a preferred first-line treatment for patients with unre-sectable,RAS and BRAF wild-type,left-sided metasta...BACKGROUND The combination of anti-epidermal growth factor receptor(EGFR)therapy and chemotherapy is currently a preferred first-line treatment for patients with unre-sectable,RAS and BRAF wild-type,left-sided metastatic colorectal cancer(mCRC).Several studies have also demonstrated the benefit of anti-EGFR therapy in sub-sequent line settings for this patient population.However,direct evidence com-paring the effectiveness of frontline vs subsequent anti-EGFR therapy remains limited,leaving a crucial gap in guiding optimal treatment strategies.AIM To compare overall survival(OS)between frontline and subsequent anti-EGFR treatment in patients with unresectable,RAS and BRAF wild-type,left-sided mCRC.METHODS We retrospectively reviewed the medical records of mCRC patients treated at The King Chulalongkorn Memorial Hospital and Songklanagarind Hospital,Thailand,between January 2013 and April 2023.Patients were classified into two groups based on the sequence of their anti-EGFR treatment.The primary endpoint was OS.RESULTS Among 222 patients with a median follow-up of 29 months,no significant difference in OS was observed between the frontline and subsequent-line groups(HR 1.03,95%CI:0.73-1.46,P=0.878).The median OS was 35.53 months(95%CI:26.59-44.47)for the frontline group and 31.60 months(95%CI:27.83-35.37)for the subsequent-line group.In the subsequent-line group,71 patients(32.4%)who ultimately never received anti-EGFR therapy had a significantly worse median OS of 19.70 months(95%CI:12.87-26.53).CONCLUSION Frontline and subsequent-line anti-EGFR treatments provide comparable OS in unresectable,RAS/BRAF wild-type,left-sided mCRC patients,but early exposure is vital for those unlikely to receive subsequent therapy.展开更多
Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,an...Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism.Due to its crucial and very pleiotro pic activity,reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases.Howeve r,because of its poor bioavailability and pharmacological properties,brain-derived neurotrophic factor itself has a very low therapeutic value.Moreover,the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects.Therefo re,developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research.Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules.In this review,we give a comprehensive description of the diffe rent tro pomyosin receptor kinase B receptor agonist drugs developed so far and of the res ults of their application in animal models of several neurological diseases.Moreover,we discuss the main benefits of tropomyosin receptor kinase B receptor agonists,concentrating especially on the new tropomyosin receptor kinase B agonist antibodies.The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity.Moreover,tro pomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor.Therefore,while,based on the current knowledge,the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reve rse the disease pathology per se,promoting brainderived neurotrophic factor/tro pomyosin receptor kinase B signaling still has a very high therapeutic relevance.展开更多
BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to asce...BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology.展开更多
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta...Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.展开更多
文摘Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries.
文摘Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments.
基金supported by the National Natural Science Foundation of China(Key Program),No.11932013the National Natural Science Foundation of China(General Program),No.82272255+2 种基金Armed Police Force High-Level Science and Technology Personnel ProjectThe Armed Police Force Focuses on Supporting Scientific and Technological Innovation TeamsKey Project of Tianjin Science and Technology Plan,No.20JCZDJC00570(all to XC)。
文摘Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.82371444(to YZ)the Natural Science Foundation of Hubei Province,No.2022CFB216(to XC)the Key Research Project of Ministry of Science and Technology of China,No.2022ZD021160(to YZ)。
文摘The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders.
基金supported by the National Natural Science Foundation of China,No.82201460(to YH)Nanjing Medical University Science and Technology Development Fund,No.NMUB20210202(to YH).
文摘Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
基金Supported by Grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.RS-2022-KH129889.
文摘BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment.
基金Supported by The National Natural Science Foundation of China,No.82350127 and No.82241013the Shanghai Natural Science Foundation,No.20ZR1411600+2 种基金the Shanghai Shenkang Hospital Development Center,No.SHDC2020CR4039the Bethune Ethicon Excellent Surgery Foundation,No.CESS2021TC04Xuhui District Medical Research Project of Shanghai,No.SHXH201805.
文摘BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.
基金supported by the National Key R&D Program of China,No.2021YFA0805200(to SY)the National Natural Science Foundation of China,No.31970954(to SY)two grants from the Department of Science and Technology of Guangdong Province,Nos.2021ZT09Y007,2020B121201006(both to XJL)。
文摘Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy.
基金supported by the National Natural Science Foundation of China,No.82071254(to WZ).
文摘Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia.
基金Supported by Hebei Province Medical Science Research Project Plan,No.20230755.
文摘BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2(LILRB2)in GC.We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands,angiopoietin-like protein 2(ANGPTL2)and human leukocyte antigen-G(HLA-G),contributing to immunosuppression.AIM To investigate the relationship between CSF3/CSF3R and LILRB2,as well as its ligands ANGPTL2 and HLA-G,in GC.METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed,stratifying patients by CSF3R expression.Differentially expressed genes and immune checkpoints were evaluated.Immunohistochemistry(IHC)was performed on GC tissues.Correlation analyses of CSF3R,LILRB2,ANGPTL2,and HLA-G were conducted using The Cancer Genome Atlas data and IHC results.GC cells were treated with CSF3,and expression levels of LILRB2,ANGPTL2,and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting.RESULTS Among 122 upregulated genes in high CSF3R expression groups,LILRB2 showed the most significant increase.IHC results indicated high expression of LILRB2(63.0%),ANGPTL2(56.5%),and HLA-G(73.9%)in GC tissues.Strong positive correlations existed between CSF3R and LILRB2,ANGPTL2,and HLA-G mRNA levels(P<0.001).IHC confirmed positive correlations between CSF3R and LILRB2(P<0.001),and HLA-G(P=0.010),but not ANGPTL2(P>0.05).CSF3 increased LILRB2,ANGPTL2,and HLA-G expression in GC cells.Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression,impacting CSF3’s regulatory effects.CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands,with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.
基金Supported by the National Key Research and Development Program of China,No.2019YFC1709703Jiangxi Provincial Science and Technology Department,No.20212BAG70037+1 种基金Jiangxi Provincial Education Department Science Program,No.GJJ201259Jiangxi Provincial Administration of Traditional Chinese Medicine,No.2021B324.
文摘BACKGROUND Depression significantly threatens human health.Purinergic receptors are reported to be associated with depression.However,there is no bibliometric research in this field have been published.AIM To provide some reference for the further research in the field of purinergic receptors and depression utilizing bibliometric analysis.METHODS Relevant researches were retrieved from the Web of Science Core Collection database.The period of the search was from January 1,2003 to December 31,2023.The CiteSpace(6.2.R7)and VOSviewer(1.6.19)were applied to identify the main contributors of countries,authors,institutions,references and journals.Besides,we evaluate keywords to assess the hotspots and trends over the previous 2 decades.RESULTS Totally,247 articles were identified,showing an increasing trend over time.The most productive country,institution,and journal in this field are China,Harvard University,and Biological Psychiatry,respectively.Liang SD and Rodrigues,Ana Lucia S were the most prolific authors.Burnstock G ranked first among the cited authors.The cooperation among countries and disciplines is crucial.The P2X7 receptor provides promising prospects for treating depression and further studies are warranted to validate the scope and significance of depression therapeutic strategies.CONCLUSION This study provides an overview of the worldwide research status and future trends in purinergic receptors and depression.P2X7 receptor is considered an appropriate target for the treatment of depression,as well as neurological diseases.It is implied that based on purinergic system,the future prospects for interventions aimed at depression treatment are promising,showing the way for both augmentation strategies and new drug treatments in the context of the pharmacology of depression.
基金Supported by Jilin Provincial Natural Science Foundation,No.YDZJ202401650ZYTS。
文摘This editorial discusses Christodoulidis et al's article,which appeared in the most recent edition.The clinical trials have demonstrated the programmed cell death receptor 1(PD-1)inhibitor Pembrolizumab involved combination therapy can improve the efficacy of advanced gastric cancer(AGC).Pembrolizumab combined with chemotherapy can enhance its sensitivity,and further eliminate tumor cells that develop resistance to chemotherapy.The combination of Pembrolizumab and Trastuzumab targeting human epidermal growth factor receptor 2 showed improved prognosis.The overall toxic effects of Pembrolizumab are significantly lower than traditional chemotherapy,and the safety is controllable.PD-1 inhibitor Pembrolizumab sheds a light on the treatment of AGC and brings new hope to the clinical practice.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)and funded by the Ministry of Education(2021R1I1A3056002,to Jinu Kim,RS-2023-00274853,to Daeun MOON).
文摘The epidermal growth factor receptor(EGFR)is a transmembrane glycoprotein that plays a crucial role in signal transduction and cellular responses.This review explores the function of EGFR in kidney physiology and its implications for various kidney diseases.EGFR signaling is essential for kidney function and repair mechanisms,and its dysregulation significantly impacts both acute and chronic kidney conditions.The review discusses the normal distribution of EGFR in kidney tubular segments,the mechanism of its activation and inhibition,and the therapeutic potential of EGFR-targeting antagonists and ligands.Additionally,it explores the pathophysiological characteristics observed in rodent models of kidney diseases through pharmacological and genetic inhibition of EGFR,highlighting therapeutic challenges and limitations such as species differences,variability in disease models,and potential adverse effects.Overall,the findings underscore the multifaceted role of EGFR in kidney diseases,influencing inflammation,fibrosis,and tissue injury.This complex involvement suggests that targeting EGFR may be a beneficial therapeutic strategy for managing these conditions,potentially mitigating inflammation and fibrosis while promoting tissue repair.
基金Supported by National Natural Science Foundation of China,No.81800771 and No.81300702.
文摘BACKGROUND The global prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has continued to increase annually.Recent studies have indicated that inhibition of metabotropic glutamate receptor 5(mGluR5)may alleviate hepatic steatosis.However,the precise mechanism warrants further exploration.AIM To investigate the potential mechanism by which mGluR5 attenuates hepatocyte steatosis in vitro and in vivo.METHODS Free fatty acids(FFAs)-stimulated HepG2 cells were treated with the mGluR5 antagonist MPEP and the mGluR5 agonist CHPG.Oil Red O staining and a triglyceride assay kit were used to evaluate lipid content.Western blot analysis was conducted to detect the expression of the autophagy-associated proteins p62 and LC3-II,as well as the expression of the key signaling molecules AMPK and ULK1,in the treated cells.To further elucidate the contributions of autophagy and AMPK,we used chloroquine(CQ)to inhibit autophagy and compound C(CC)to inhibit AMPK activity.In parallel,wild-type mice and mGluR5 knockout(KO)mice fed a normal chow diet or a high-fat diet(HFD)were used to evaluate the effect of mGluR5 inhibition in vivo.RESULTS mGluR5 inhibition by MPEP attenuated hepatocellular steatosis and increased LC3-II and p62 protein expression.The autophagy inhibitor CQ reversed the effects of MPEP.In addition,MPEP promoted AMPK and ULK1 expression in HepG2 cells exposed to FFAs.MPEP treatment led to the nuclear translocation of transcription factor EB,which is known to promote p62 expression.This effect was negated by the AMPK inhibitor CC.mGluR5 KO mice presented reduced body weight,improved glucose tolerance and reduced hyperlipidemia when fed a HFD.Additionally,the livers of HFD-fed mGluR5 KO mice presented increases in LC3-II and p62.CONCLUSION Our results suggest that mGluR5 inhibition promoted autophagy and reduced hepatocyte steatosis through activation of the AMPK signaling pathway.These findings reveal a new functional mechanism of mGluR5 as a target in the treatment of MASLD.
基金Peking University First Hospital Institutional Review Board(No.2018104).
文摘BACKGROUND With accumulating evidence showing a benefit in the renal and cardiovascular systems,diabetes guidelines recommend that patients with diabetes and chronic kidney disease(CKD)be treated with sodium-glucose cotransporter-2 inhibitor(SGLT2i)and/or glucagon like peptide-1 receptor agonists(GLP-1RAs)for renal protection.The real-world efficacy of the two medications on the urinary albumin-creatinine ratio(UACR)and estimated glomerular filtration rate(eGFR)remains to be explored.AIM To evaluate the SGLT2i and GLP-1RA application rates and UACR alterations after intervention in a real-world cohort of patients with diabetes.METHODS A cohort of 5482 patients with type 2 diabetes were enrolled and followed up at the Integrated Care Clinic for Diabetes of Peking University First Hospital for at least 6 months.Propensity score matching was performed,and patients who were not recommended for GLP-1RA or SGLT2i with comparable sex categories and ages were assigned to the control group at a 1:2 ratio.Blood glucose,body weight,UACR and eGFR were evaluated after 6 months of treatment in real-world clinical practice.RESULTS A total of 139(2.54%)patients started GLP-1RA,and 387(7.06%)received SGLT2i.After 6 months,the variations in fasting blood glucose,prandial blood glucose,and glycosylated hemoglobin between the GLP-1RA group and the SGLT2i and control groups were not significantly different.UACR showed a tendency toward a greater reduction compared with the control group,although this difference was not statistically significant(GLP-1RA vs control,-2.20 vs 30.16 mg/g,P=0.812;SGLT2i vs control,-20.61 vs 12.01 mg/g,P=0.327);eGFR alteration also showed no significant differences.Significant weight loss was observed in the GLP-1RA group compared with the control group(GLP-1RA vs control,-0.90 vs 0.27 kg,P<0.001),as well as in the SGLT2i group(SGLT2i vs control,-0.59 vs-0.03 kg,P=0.010).CONCLUSION Compared with patients who received other glucose-lowering drugs,patients receiving SGLT2i or GLP-1RAs presented significant weight loss,a decreasing trend in UACR and comparable glucose-lowering effects in realworld settings.
文摘BACKGROUND The combination of anti-epidermal growth factor receptor(EGFR)therapy and chemotherapy is currently a preferred first-line treatment for patients with unre-sectable,RAS and BRAF wild-type,left-sided metastatic colorectal cancer(mCRC).Several studies have also demonstrated the benefit of anti-EGFR therapy in sub-sequent line settings for this patient population.However,direct evidence com-paring the effectiveness of frontline vs subsequent anti-EGFR therapy remains limited,leaving a crucial gap in guiding optimal treatment strategies.AIM To compare overall survival(OS)between frontline and subsequent anti-EGFR treatment in patients with unresectable,RAS and BRAF wild-type,left-sided mCRC.METHODS We retrospectively reviewed the medical records of mCRC patients treated at The King Chulalongkorn Memorial Hospital and Songklanagarind Hospital,Thailand,between January 2013 and April 2023.Patients were classified into two groups based on the sequence of their anti-EGFR treatment.The primary endpoint was OS.RESULTS Among 222 patients with a median follow-up of 29 months,no significant difference in OS was observed between the frontline and subsequent-line groups(HR 1.03,95%CI:0.73-1.46,P=0.878).The median OS was 35.53 months(95%CI:26.59-44.47)for the frontline group and 31.60 months(95%CI:27.83-35.37)for the subsequent-line group.In the subsequent-line group,71 patients(32.4%)who ultimately never received anti-EGFR therapy had a significantly worse median OS of 19.70 months(95%CI:12.87-26.53).CONCLUSION Frontline and subsequent-line anti-EGFR treatments provide comparable OS in unresectable,RAS/BRAF wild-type,left-sided mCRC patients,but early exposure is vital for those unlikely to receive subsequent therapy.
文摘Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism.Due to its crucial and very pleiotro pic activity,reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases.Howeve r,because of its poor bioavailability and pharmacological properties,brain-derived neurotrophic factor itself has a very low therapeutic value.Moreover,the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects.Therefo re,developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research.Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules.In this review,we give a comprehensive description of the diffe rent tro pomyosin receptor kinase B receptor agonist drugs developed so far and of the res ults of their application in animal models of several neurological diseases.Moreover,we discuss the main benefits of tropomyosin receptor kinase B receptor agonists,concentrating especially on the new tropomyosin receptor kinase B agonist antibodies.The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity.Moreover,tro pomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor.Therefore,while,based on the current knowledge,the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reve rse the disease pathology per se,promoting brainderived neurotrophic factor/tro pomyosin receptor kinase B signaling still has a very high therapeutic relevance.
基金The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of University of Campania Luigi Vanvitelli(Protocol code 795 on December 23,2019).
文摘BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology.
基金supported by the Natural Science Foundation of Hunan Province,No.2021JJ30389(to JG)the Key Research and Development Program of Hunan Province of China,Nos.2022SK2042(to LL)and 2020SK2122(to ET)。
文摘Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.