SRY-related HMG-box(Sox) transcription factors are known to regulate central nervous system development and are involved in several neurological diseases.Post-translational modification of Sox proteins is known to alt...SRY-related HMG-box(Sox) transcription factors are known to regulate central nervous system development and are involved in several neurological diseases.Post-translational modification of Sox proteins is known to alter their functions in the central nervous system.Among the different types of post-translational modification,small ubiquitin-like modifier(SUMO) modification of Sox proteins has been shown to modify their transcriptional activity.Here,we review the mechanisms of three Sox proteins in neuronal development and disease,along with their transcriptional changes under SUMOylation.Across three species,lysine is the conserved residue for SUMOylation.In Drosophila,SUMOylation of Sox N plays a repressive role in transcriptional activity,which impairs central nervous system development.However,de SUMOylation of Sox E and Sox11 plays neuroprotective roles,which promote neural crest precursor formation in Xenopus and retinal ganglion cell differentiation as well as axon regeneration in the rodent.We further discuss a potential translational therapy by SUMO site modification using AAV gene transduction and Clustered regularly interspaced short palindromic repeats-Cas9 technology.Understanding the underlying mechanisms of Sox SUMOylation,especially in the rodent system,may provide a therapeutic strategy to address issues associated with neuronal development and neurodegeneration.展开更多
Ubiquitin-fold modifier 1(UFM1) is one of the newly-identified ubiquitin-like proteins.Similar to ubiquitin,UFM1 is conjugated to its target proteins by a three-step enzymatic reaction.The UFM1-activating enzyme,ubi...Ubiquitin-fold modifier 1(UFM1) is one of the newly-identified ubiquitin-like proteins.Similar to ubiquitin,UFM1 is conjugated to its target proteins by a three-step enzymatic reaction.The UFM1-activating enzyme,ubiquitin-like modifier-activating enzyme 5(UBA5),serves as the E1 to activate UFM1;UFM1-conjugating enzyme 1(UFC1) acts as the E2 to transfer the activated UFM1 to the active site of the E2;and the UFM1-specific ligase 1(UFL1) acts as the E3 to recognize its substrate,transfer,and ligate the UFM1 from E2 to the substrate.This process is called ufmylation.UFM1 chains can be cleaved from its target proteins by UFM1-specific proteases(Uf SPs),suggesting that the ufmylation modification is reversible.UFM1 cascade is conserved among nearly all of the eukaryotic organisms,but not in yeast,and associated with several cellular activities including the endoplasmic reticulum stress response and hematopoiesis.Furthermore,the UFM1 cascade is closely related to a series of human diseases.In this review,we summarize the molecular details of this reversible modification process,the recent progress of its functional studies,as well as its implication in tumorigenesis and potential therapeutic targets for cancer.展开更多
基金supported by NIH CORE Grant P30 EY08098 to the Department of Ophthalmology,University of Pittsburgh,the Eye and Ear Foundation of Pittsburgh (to KCC)。
文摘SRY-related HMG-box(Sox) transcription factors are known to regulate central nervous system development and are involved in several neurological diseases.Post-translational modification of Sox proteins is known to alter their functions in the central nervous system.Among the different types of post-translational modification,small ubiquitin-like modifier(SUMO) modification of Sox proteins has been shown to modify their transcriptional activity.Here,we review the mechanisms of three Sox proteins in neuronal development and disease,along with their transcriptional changes under SUMOylation.Across three species,lysine is the conserved residue for SUMOylation.In Drosophila,SUMOylation of Sox N plays a repressive role in transcriptional activity,which impairs central nervous system development.However,de SUMOylation of Sox E and Sox11 plays neuroprotective roles,which promote neural crest precursor formation in Xenopus and retinal ganglion cell differentiation as well as axon regeneration in the rodent.We further discuss a potential translational therapy by SUMO site modification using AAV gene transduction and Clustered regularly interspaced short palindromic repeats-Cas9 technology.Understanding the underlying mechanisms of Sox SUMOylation,especially in the rodent system,may provide a therapeutic strategy to address issues associated with neuronal development and neurodegeneration.
基金supported by the National Natural Science Foundation of China (NSFCGrant Nos.31530016 and 31461143012)+2 种基金the National Basic Research Program of China (973 ProgramGrant Nos.2013CB911002 and 2015CB910601)the Scientific Research Base Development Program of the Beijing Municipal Commission of Education,China to XX
文摘Ubiquitin-fold modifier 1(UFM1) is one of the newly-identified ubiquitin-like proteins.Similar to ubiquitin,UFM1 is conjugated to its target proteins by a three-step enzymatic reaction.The UFM1-activating enzyme,ubiquitin-like modifier-activating enzyme 5(UBA5),serves as the E1 to activate UFM1;UFM1-conjugating enzyme 1(UFC1) acts as the E2 to transfer the activated UFM1 to the active site of the E2;and the UFM1-specific ligase 1(UFL1) acts as the E3 to recognize its substrate,transfer,and ligate the UFM1 from E2 to the substrate.This process is called ufmylation.UFM1 chains can be cleaved from its target proteins by UFM1-specific proteases(Uf SPs),suggesting that the ufmylation modification is reversible.UFM1 cascade is conserved among nearly all of the eukaryotic organisms,but not in yeast,and associated with several cellular activities including the endoplasmic reticulum stress response and hematopoiesis.Furthermore,the UFM1 cascade is closely related to a series of human diseases.In this review,we summarize the molecular details of this reversible modification process,the recent progress of its functional studies,as well as its implication in tumorigenesis and potential therapeutic targets for cancer.