期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Arabidopsis small ubiquitin-related modifier protease ASP1 positively regulates abscisic acid signaling during early seedling development~~ 被引量:5
1
作者 Qiongli wang Gao-Ping Qu +3 位作者 Xiangxiong Kong Yan Yan Jigang Li Jing Bo Jin 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第10期924-937,共14页
The small ubiquitin-related modifier (SUMO) modification plays an important role in the regulation of abscisic acid (ABA) signaling, but the function of the SUMO protease, in ABA signaling, remains largely unknown... The small ubiquitin-related modifier (SUMO) modification plays an important role in the regulation of abscisic acid (ABA) signaling, but the function of the SUMO protease, in ABA signaling, remains largely unknown. Here, we show that the SUMO protease, ASPI positively regulates ABA signaling. Mutations in ASPI resulted in an ABA-insensitive phenotype, during early seedling develop- ment. Wild-type ASP1 successfully rescued, whereas an ASPI mutant (C577S), defective in SUMO protease activity, failed to rescue, the ABA-insensitive phenotype of asp1-1. Expression of ABI5 and MYB3o target genes was attenuated in asp^-I and our genetic analyses revealed that ASP1 may function upstream of ABI5 and MYB3o. 展开更多
关键词 ASP ABA Arabidopsis small ubiquitin-related modifier protease ASP1 positively regulates abscisic acid signaling during early seedling development ABI Figure
原文传递
Loss-of-Function of a Ubiquitin-Related Modifier Promotes the Mobilization of the Active MITE mPing 被引量:3
2
作者 Takuji Tsukiyama Shota Teramoto +8 位作者 KanakoYasuda Akira Horibata Nanako Mori Yutaka Okumoto Masayoshi Teraishi Hiroki Saito Akiko Onishi Kanako Tamura Takatoshi Tanisaka 《Molecular Plant》 SCIE CAS CSCD 2013年第3期790-801,共12页
Miniature inverted-repeat transposable elements (MITEs) are widespread in both prokaryotic and eukaryotic genomes, where their copy numbers can attain several thousands. Little is known, however, about the genetic f... Miniature inverted-repeat transposable elements (MITEs) are widespread in both prokaryotic and eukaryotic genomes, where their copy numbers can attain several thousands. Little is known, however, about the genetic factor(s) affecting their transpositions. Here, we show that disruption of a gene encoding ubiquitin-like protein markedly enhances the transposition activity of a MITE roPing in intact rice plants without any exogenous stresses. We found that the transposition activity of roPing is far higher in the lines harboring a non-functional allele at the Rurml (Rice ubiquitin-related modifier-I) locus than in the wild-type line. Although the alteration of cytosine methylation pattern triggers the activation of transposable elements under exogenous stress conditions, the methylation degrees in the whole genome, the roPing-body region, and the roPing-flanking regions of the non-functional Rurml line were unchanged. This study provides experimental evidence for one of the models of genome shock theory that genetic accidents within cells enhance the transposition activities of transposable elements. 展开更多
关键词 Oryza sativa MITE mPing ubiquitin-related modifier methylation genome shock theory.
原文传递
Progress of small ubiquitin-related modifiers in kidney diseases
3
作者 Ou Li Qian Ma +3 位作者 Fei Li Guang-Yan Cai Xiang-Mei Chen Quan Hong 《Chinese Medical Journal》 SCIE CAS CSCD 2019年第4期466-473,共8页
Objective: Small ubiquitin-related modifiers (SUMOs) are a group of post-translational modification proteins extensively expressed in eukaryotes. Abnormal SUMOylation can lead to the development of various diseases. T... Objective: Small ubiquitin-related modifiers (SUMOs) are a group of post-translational modification proteins extensively expressed in eukaryotes. Abnormal SUMOylation can lead to the development of various diseases. This article summarizes the progress on research of the role of SUMOs in various types of kidney diseases to further increase the understanding of the regulatory functions of SUMOylation in the pathogenesis of kidney diseases. Data sources: This review was based on articles published in the PubMed databases up to January 2018, using the keywords including "SUMOs," "SUMOylation," and "kidney diseases." Study selection: Original articles and critical reviews about SUMOs and kidney disease were selected for this review. A total of 50 studies were in English. Results: SUMO participates in the activation of NF-κB inflammatory signaling pathway, playing a central regulatory role in the inflammation and progression of DN, and the secretion of various chemokines in AKI. SUMO involves in the regulation of TG2 and Nrf2 antioxidant stress, affecting renal tubular injury in AKI. SUMO affects the MAPK/ERK pathway, regulating intracellular signal transduction, modulating the transcription and expression of effector molecules in DN. SUMO contributes to the TGF-β/Smad pathway, leading to fibrosis of the kidney. The conjugate combination of SUMO and p53 regulates cell proliferation and apoptosis, and participates in the regulation of tumorigenesis. In addition, SUMOylation of MITF modulates renal tumors secondary to melanoma, Similarly, SUMOylation of tumor suppressor gene VHL regulates the occurrence of renal cell carcinoma in VHL syndrome. Conclusions: Tissue injury, inflammatory responses, fibrosis, apoptosis, and tumor proliferation in kidney diseases all involve SUMOs. Further research of the substrate SUMOylation and regulatory mechanisms of SUMO in kidney diseases will improve and develop new treatment measures and strategies targeting kidney diseases. 展开更多
关键词 SMALL ubiquitin-related MODIFIERS SUMOYLATION KIDNEY diseases
原文传递
Construction,Expression and Purification of SUMO1-GST Fusion Protein
4
作者 QIAO Xiao-fang FANG Xue-dong LIU Jun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第2期245-248,共4页
Sumoylation is an important protein modification discovered recently. SUMO(small ubiquitin-related modifier) pathway regulates the protein stability and transcriptional activity with a 12-kDa small molecular protein... Sumoylation is an important protein modification discovered recently. SUMO(small ubiquitin-related modifier) pathway regulates the protein stability and transcriptional activity with a 12-kDa small molecular protein, SUMO, ligated to the target protein. The purification of SUMO proteins is a key step to reveal their function. The purpose of this study was to construct the recombinant SUMO1 gene cloned to a pGEX-4T-1 vector to express and purify the SUMO1-GST fusion protein in Escherichia coli. First, the full length DNA sequence of SUMO1 gene was amplified by PCR and was ligated to pMD18-T vector. Then the SUMO1 gene was subcloned to pGEX-4T-1 prokaryotic expression vector between BamHI and XhoI sites, and transformed in Escherichia coli DH5α cells. The right colonies were identified by restrictive enzyme digestion and sequencing. The correct rebombinant plasmid of pGEX-4T-1-SUMO1 was transformed in Escherichia coli BL21 cells and then induced by IPTG(isopropyl- β-D-1- thiogalacto-pyranoside) to express the SUMO1-GST fusion protein. The highly purified SUMO1-GST(glutathione S-transferase) fusion protein was obtained by affinity chromatography. Finally, the properties of SUMO1-GST fusion protein were confirmed by Coomassie brilliant blue strain and Western blot analysis. The recombinant plasmid of pGEX-4T-1-SUMO1 was successfully constructed, and SUMO1-GST fusion proteins were successfully expressed. 展开更多
关键词 Small ubiquitin-related modifier 1 (SUMO1) Gutathione S-transferase(GST) fusion protein Affinity chromatography
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部