Background: Ubiquitination plays an essential role in many biological processes, including viral infection, and can be reversed by deubiquitinating enzymes (DUBs). Although some studies discovered that DUBs inhibit or...Background: Ubiquitination plays an essential role in many biological processes, including viral infection, and can be reversed by deubiquitinating enzymes (DUBs). Although some studies discovered that DUBs inhibit or enhance viral infection by various mechanisms, there is lack of information on the role of DUBs in virus regulation, which needs to be further investigated.Methods: Immunoblotting, real-time polymerase chain reaction,in vivo/in vitro deubiquitination, protein immunoprecipitation, immunofluorescence, and co-localization biological techniques were employed to examine the effect of ubiquitin-specific protease 3 (USP3) on APOBEC3G (A3G) stability and human immunodeficiency virus (HIV) replication. To analyse the relationship between USP3 and HIV disease progression, we recruited 20 HIV-infected patients to detect the levels of USP3 and A3G in peripheral blood and analysed their correlation with CD4^(+) T-cell counts. Correlation was estimated by Pearson correlation coefficients (for parametric data).Results: The results demonstrated that USP3 specifically inhibits HIV-1 replication in an A3G-dependent manner. Further investigation found that USP3 stabilized 90% to 95% of A3G expression by deubiquitinating Vif-mediated polyubiquitination and blocking its degradation in an enzyme-dependent manner. It also enhances the A3G messenger RNA (mRNA) level by binding to A3G mRNA and stabilizing it in an enzyme-independent manner. Moreover, USP3 expression was positively correlated with A3G expression (r= 0.5110) and CD4^(+) T-cell counts (r= 0.5083) in HIV-1-infected patients.Conclusions: USP3 restricts HIV-1 viral infections by increasing the expression of the antiviral factor A3G. Therefore, USP3 may be an important target for drug development and serve as a novel therapeutic strategy against viral infections.展开更多
BACKGROUND Colorectal cancer(CRC)is one very usual tumor together with higher death rate.Ubiquitin-specific protease 21(USP21)has been confirmed to take part into the regulation of CRC progression through serving as a...BACKGROUND Colorectal cancer(CRC)is one very usual tumor together with higher death rate.Ubiquitin-specific protease 21(USP21)has been confirmed to take part into the regulation of CRC progression through serving as a facilitator.Interestingly,the promotive function of USP21 has also discovered in the progression of CRC.ZEB1 has illustrated to be modulated by USP7,USP22 and USP51 in cancers.However,the regulatory functions of USP21 on ZEB1 in CRC progression need more invest-igations.AIM To investigate the relationship between USP21 and ZEB1 in CRC progression.METHODS The mRNA and protein expressions were assessed through RT-qPCR,western blot and IHC assay.The interaction between USP21 and ZEB1 was evaluated through Co-IP and GST pull down assays.The cell proliferation was detected through colony formation assay.The cell migration and invasion abilities were determined through Transwell assay.The stemness was tested through sphere formation assay.The tumor growth was evaluated through in vivo mice assay.RESULTS In this work,USP21 and ZEB1 exhibited higher expression in CRC,and resulted into poor prognosis.Moreover,the interaction between USP21 and ZEB1 was further investigated.It was demonstrated that USP21 contributed to the stability of ZEB1 through modulating ubiquitination level.In addition,USP21 streng-thened cell proliferation,migration and stemness through regulating ZEB1.At last,through in vivo assays,it was illustrated that USP21/ZEB1 axis aggravated tumor growth.CONCLUSION For the first time,these above findings manifested that USP21 promoted tumorigenicity and stemness of CRC by deubiquitinating and stabilizing ZEB1.This discovery suggested that USP21/ZEB1 axis may provide novel sights for the treatment of CRC.展开更多
Whether the 370-371insACA, 494T〉C, and 1423C〉T haplotype in ubiquitin-specific protease 26 (USP26) gene is associated with male infertility is controversial. To clarify this issue, we conducted a meta-analysis bas...Whether the 370-371insACA, 494T〉C, and 1423C〉T haplotype in ubiquitin-specific protease 26 (USP26) gene is associated with male infertility is controversial. To clarify this issue, we conducted a meta-analysis based on the most recent studies. Eligible studies were screened by using PubMed and Embase. Pooled odd ratio (OR) with 95% confidence interval (CI) was calculated with fixed effect models. Ten studies with 1603 patients and 2505 controls were included, Overall, the results indicated that there was an association between the haplotype and male infertile risk (OR = 1.74, 95% CI: 1.09-2.77). The OR calculated based on the five studies in Asia and three in Europe was 1.96 (95% CI: 1,05-3.67) and 1.54 (95% Ch 0.75-3.16) respectively, however, the OR was 0.86 (95% Ch 0.05-15,29) based on the two investigations in America. In addition, the data from the patients with azoospermia (AZO) showed an increased pooled OR of 2.35 (95% Cl: 1.22-4.50). In contrast, the studies with oligoasthenoteratozoospermia (OAT) exhibited that the pooled OR was 0,97 (95% Ch 0.43-2.16). Our analyses indicate that there is an association of alteration in USP26 with male infertility, especially in AZO and Asian population.展开更多
Aim: To study the incidence of single nucleotide polymorphisms in ubiquitin-specific protease 26 (USP26) gene and its involvement in idiopathic male infertility in China. Methods: Routine semen analysis was perfor...Aim: To study the incidence of single nucleotide polymorphisms in ubiquitin-specific protease 26 (USP26) gene and its involvement in idiopathic male infertility in China. Methods: Routine semen analysis was performed. Infertility factors such as immunological, infectious and biochemical disorders were examined to select patients with idiopathic infertility. DNA was isolated from peripheral blood of the selected patients and control population, which were examined for mutations using polymerase chain reaction-single strand conformation polymorphism analysis. Furthermore, nucleotide sequences were sequenced in some patients and controls. Results: Of 41 infertile men, 9 (22.0%, P = 0.01) had changes in USP26 gene on the X chromosome. A compound mutation (364insACA; 460G→A) was detected in 8 patients (19.5%, P = 0.01) and a 1044T→A substitution was found in 1 patient (2.4%, P 〉 0.05). All three variations led to changes in the coding amino acids. Two substitutions predict some changes: 460G→ A changes a valine into an isoleucine, and 1044T → A substitutes a leucine for a phenylalanine. Another insertion of three nucleotides ACA causes an insertion of threonine. No other changes were found in the remaining patients and fertile controls. Conclusion: The USP26 gene might be of importance in male reproduction. Mutations in this gene might be associated with male infertility, and might negatively affect testicular function. Further research on this issue is in progress.展开更多
BACKGROUND Intestinal ischemia reperfusion(I/R) injury is a serious but common pathophysiological process of many diseases, resulting in a high mortality rate in clinical practice. Ubiquitin-specific protease 22(USP22...BACKGROUND Intestinal ischemia reperfusion(I/R) injury is a serious but common pathophysiological process of many diseases, resulting in a high mortality rate in clinical practice. Ubiquitin-specific protease 22(USP22) acts as regulator of cell cycle progression, proliferation, and tumor invasion. Depleted USP22 expression has been reported to contribute to arrested cell cycle and disrupted generation of differentiated cell types in crypts and villi. However, the role of USP22 in intestinal damage recovery has not been investigated. Therefore, elucidation of the underlying mechanism of USP22 in intestinal I/R injury may help to improve the tissue repair and patient prognosis in clinical practice.AIM To investigate the role of USP22 in intestinal cell proliferation and regeneration after intestinal I/R injury.METHODS An animal model of intestinal I/R injury was generated in male Sprague-Dawley rats by occlusion of the superior mesenteric artery followed by reperfusion.Chiu's scoring system was used to grade the damage to the intestinal mucosa. An in vitro model was developed by incubating rat intestinal epithelial IEC-6 cells in hypoxia/reoxygenation conditions in order to simulate I/R in vivo. siRNA and overexpression plasmid were used to regulate the expression of USP22. USP22,Cyclin D1, and proliferating cell nuclear antigen(PCNA) expression levels were measured by Western blot analysis and immunohistochemistry staining. Cell survival(viability) and cell cycle were evaluated using the Cell Counting Kit-8and flow cytometry, respectively.RESULTS USP22 expression was positively correlated with the expression levels of PCNA and Cyclin D1 both in vivo and in vitro, which confirmed that USP22 was involved in cell proliferation and intestinal regeneration after intestinal I/R injury. Decreased levels of Cyclin D1 and cell cycle arrest were observed in the USP22 knockdown group(P < 0.05), while opposite results were observed in the USP22 overexpression group(P < 0.05). In addition, increased expression of USP22 was related to improved intestinal pathology or IEC-6 cell viability after I/R or hypoxia/reoxygenation. These results suggested that USP22 may exert a protective effect on intestinal I/R injury by regulating cell proliferation and facilitating tissue regeneration.CONCLUSION USP22 is correlated with promoting intestinal cell proliferation and accelerating intestinal tissue regeneration after intestinal I/R injury and may serve as a potential target for therapeutic development for tissue repair during intestinal I/R injury.展开更多
BACKGROUND Ubiquitin-specific protease 15(USP15)is an important member of the ubiquitinspecific protease family,the largest deubiquitinase subfamily,whose expression is dysregulated in many types of cancer.However,the...BACKGROUND Ubiquitin-specific protease 15(USP15)is an important member of the ubiquitinspecific protease family,the largest deubiquitinase subfamily,whose expression is dysregulated in many types of cancer.However,the biological function and the underlying mechanisms of USP15 in gastric cancer(GC)progression have not been elucidated.AIM To explore the biological role and underlying mechanisms of USP15 in GC progression.METHODS Bioinformatics databases and western blot analysis were utilized to determine the expression of USP15 in GC.Immunohistochemistry was performed to evaluate the correlation between USP15 expression and clinicopathological characteristics of patients with GC.A loss-and gain-of-function experiment was used to investigate the biological effects of USP15 on GC carcinogenesis.RNA sequencing,immunofluorescence,and western blotting were performed to explore the potential mechanism by which USP15 exerts its oncogenic functions.RESULTS USP15 was up-regulated in GC tissue and cell lines.The expression level of USP15 was positively correlated with clinical characteristics(tumor size,depth of invasion,lymph node involvement,tumor-node-metastasis stage,perineural invasion,and vascular invasion),and was related to poor prognosis.USP15 knockdown significantly inhibited cell proliferation,invasion and epithelialmesenchymal transition(EMT)of GC in vitro,while overexpression of USP15 promoted these processes.Knockdown of USP15 inhibited tumor growth in vivo.Mechanistically,RNA sequencing analysis showed that USP15 regulated the Wnt signaling pathway in GC.Western blotting confirmed that USP15 silencing led to significant down-regulation ofβ-catenin and Wnt/β-catenin downstream genes(c-myc and cyclin D1),while overexpression of USP15 yielded an opposite result and USP15 mutation had no change.Immunofluorescence indicated that USP15 promoted nuclear translocation ofβ-catenin,suggesting activation of the Wnt/β-catenin signaling pathway,which may be the critical mechanism promoting GC progression.Finally,rescue experiments showed that the effect of USP15 on gastric cancer progression was dependent on Wnt/β-catenin pathway.CONCLUSION USP15 promotes cell proliferation,invasion and EMT progression of GC via regulating the Wnt/β-catenin pathway,which suggests that USP15 is a novel potential therapeutic target for GC.展开更多
Breast cancer is the most frequently diagnosed cancer in women,accounting for 30%of new diagnosing female cancers.Emerging evidence suggests that ubiquitin and ubiquitination played a role in a number of breast cancer...Breast cancer is the most frequently diagnosed cancer in women,accounting for 30%of new diagnosing female cancers.Emerging evidence suggests that ubiquitin and ubiquitination played a role in a number of breast cancer etiology and progression processes.As the primary deubiquitinases in the family,ubiquitin-specific peptidases(USPs)are thought to represent potential therapeutic targets.The role of ubiquitin and ubiquitination in breast cancer,as well as the classification and involvement of USPs are discussed in this review,such as USP1,USP4,USP7,USP9X,USP14,USP18,USP20,USP22,USP25,USP37,and USP39.The reported USPs inhibitors investigated in breast cancer were also summarized,along with the signaling pathways involved in the investigation and its study phase.Despite no USP inhibitor has yet been approved for clinical use,the biological efficacy indicated their potential in breast cancer treatment.With the improvements in phenotypic discovery,we will know more about USPs and USPs inhibitors,developing more potent and selective clinical candidates for breast cancer.展开更多
Objective Ubiquitin-specific protease 4(USP4)facilitates the development of transforming growth factor-beta 1(TGF-β1)-induced epithelial-mesenchymal transition(EMT)in various cancer cells.Moreover,EMT of renal tubula...Objective Ubiquitin-specific protease 4(USP4)facilitates the development of transforming growth factor-beta 1(TGF-β1)-induced epithelial-mesenchymal transition(EMT)in various cancer cells.Moreover,EMT of renal tubular epithelial cells(RTECs)is required for the progression of renal interstitial fibrosis.However,the role of USP4 in EMT of RTECs remains unknown.The present study aimed to explore the effect of USP4 on the EMT of RTECs as well as the involved mechanism.Methods In established unilateral ureteral obstruction(UUO)rats and NRK-52E cells,immunohistochemistry and Western blot assays were performed.Results USP4 expression was increased significantly with obstruction time.In NRK-52E cells stimulated by TGF-β1,USP4 expression was increased in a time-dependent manner.In addition,USP4 silencing with specific siRNA indicated that USP4 protein was suppressed effectively.Meanwhile,USP4 siRNA treatment restored E-cadherin and weakened alpha smooth muscle actin(α-SMA)expression,indicating that USP4 may promote EMT.After treatment with USP4 siRNA and TGF-β1 for 24 h,the expression of TGF-β1 receptor type I(TβRI)was decreased.Conclusion USP4 promotes the EMT of RTECs through upregulating TβRI,thereby facilitating renal interstitial fibrosis.These findings may provide a potential target of USP4 in the treatment of renal fibrosis.展开更多
BACKGROUND Hepatitis C virus genotype 3a(HCV G3a)is highly prevalent in Pakistan.Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV,medicinal natural products of potent antiv...BACKGROUND Hepatitis C virus genotype 3a(HCV G3a)is highly prevalent in Pakistan.Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV,medicinal natural products of potent antiviral activity should be screened for the cost-effective treatment of the disease.Furthermore,from natural products,active compounds against vital HCV proteins like non-structural protein 3(NS3)protease could be identified to prevent viral proliferation in the host.AIM To develop cost-effective HCV genotype 3a NS3 protease inhibitors from citrus fruit extracts.METHODS Full-length NS3 without co-factor non-structural protein 4A(NS4A)and codon optimized NS3 protease in fusion with NS4A were expressed in Escherichia coli.The expressed protein was purified by metal ion affinity chromatography and gel filtration.Citrus fruit extracts were screened using fluorescence resonance energy transfer(FRET)assay against the protease and polyphenols were identified as potential inhibitors using electrospray ionization-mass spectrometry(MS)/MS technique.Among different polyphenols,highly potent compounds were screened using molecular modeling approaches and consequently the most active compound was further evaluated against HCV NS4A-NS3 protease domain using FRET assay.RESULTS NS4A fused with NS3 protease domain gene was overexpressed and the purified protein yield was high in comparison to the lower yield of the full-length NS3 protein.Furthermore,in enzyme kinetic studies,NS4A fused with NS3 protease proved to be functionally active compared to full-length NS3.So it was concluded that co-factor NS4A fusion is essential for the purification of functionally active protease.FRET assay was developed and validated by the half maximal inhibitory concentration(IC50)values of commercially available inhibitors.Screening of citrus fruit extracts against the native purified fused NS4A-NS3 protease domain showed that the grapefruit mesocarp extract exhibits the highest percentage inhibition 91%of protease activity.Among the compounds identified by LCMS analysis,hesperidin showed strong binding affinity with the protease catalytic triad having S-score value of-10.98.CONCLUSION Fused NS4A-NS3 protease is functionally more active,which is effectively inhibited by hesperidin from the grapefruit mesocarp extract with an IC50 value of 23.32μmol/L.展开更多
A series of N1-substituted-3-aryl-4-alkyl-4, 5-dihydro-1H-1-pyrazolethiocarboxamide were prepared from the Mannich bases of aryl ketones in good yields. Some derivatives were found to be active against the cysteine p...A series of N1-substituted-3-aryl-4-alkyl-4, 5-dihydro-1H-1-pyrazolethiocarboxamide were prepared from the Mannich bases of aryl ketones in good yields. Some derivatives were found to be active against the cysteine protease of T.cruzi..展开更多
Background:Since the emergence of coronavirus disease 2019 to date,there is no available approved drug or definitive treatment for coronavirus disease 2019 viral infection,and the identification of novel hits against ...Background:Since the emergence of coronavirus disease 2019 to date,there is no available approved drug or definitive treatment for coronavirus disease 2019 viral infection,and the identification of novel hits against therapeutic targets has become a global emergency.Echinacea purpurea is a traditional herb utilized to treat cough,fever,sore throat,respiratory tract infection,and so on as an immune stimulant.In this study,in silico molecular docking approach was used to screen phytocompounds from E.purpurea against severe acute respiratory syndrome coronavirus 2 main protease 3C-like protease(3CLpro)and severe acute respiratory syndrome coronavirus main peptidase(96%sequence similarity)to blunt the viral gene expression and viral replication.Methods:Initially,we screened phytocompounds for their druggability and ADMET property.Furthermore,x-ray crystallographic structures of main proteases 3CLpro and main peptidase having Protein Data Bank ID 6LU7 and 2GTB were used as protein targets for the identification of potential drug candidates.We performed docking using AutoDock Vina by PyRx 0.8 software.BIOVIA Discovery Studio Visualizer v2019 was used to analyze ligand-protein complex.The probable protein targets of the selected compound were predicted by BindingDB(P≥0.7).STRING and Kyoto Encyclopedia of Genes and Genomes pathways are utilized to identify the molecular pathways modulated by the predicted targets(FDR≤0.05),and the network interaction between compounds and protein pathways was constructed by Cytoscape 3.6.1.Results:Among all the compounds,chlorogenic acid showed druggable characteristics and scored the lowest binding energy with main protease and main peptidase via interacting with active site 1 domain amino acid residues.Interestingly,chlorogenic acid interacted with Phe140 main protease 3CLpro,which is potentially involved in the dimerization.Enrichment analysis identified chlorogenic acid to modulate insulin resistance,necroptosis,interleukin-17,tumor necrosis factor signaling pathway,legionellosis,T helper 17 cell differentiation,advanced glycation end products and receptor for advanced glycation end products,mitogen-activated protein kinase,Ras,estrogen,vascular endothelial growth factor,B-cell receptor,nuclear factor kappa B,Rap1,hypoxia inducible factor-1,phosphatidylinositide 3-kinase-Akt,insulin,mechanistic target of rapamycin,p53,retinoic acid inducible gene I like receptor,and ErbB signaling pathways.Conclusion:Chlorogenic acid may act as a potent main protease 3CLpro inhibitor and may also inhibit the severe acute respiratory syndrome coronavirus 2 dimerization,viral gene expression,and replication within the lung epithelium.Chlorogenic acid may go a long way in finding one of the multipronged solutions to tackle coronavirus disease 2019 viral infection in the future.展开更多
Objective:To explore the effect of the protease inhibitor from Agaricus bisporus(J.E.Lange)Imbach(AbPI)on glucose uptake and oxidative stress in 3 T3-L1 adipocytes.Methods:Adipocytes were differentiated and stained wi...Objective:To explore the effect of the protease inhibitor from Agaricus bisporus(J.E.Lange)Imbach(AbPI)on glucose uptake and oxidative stress in 3 T3-L1 adipocytes.Methods:Adipocytes were differentiated and stained with OilRed-O staining to confirm adipogenesis.The toxic/protective effect of AbPI on the adipocytes was determined by MTT assay,intracellular reactive oxygen species generation through flow cytometry,and morphologically through confocal microscopy using propidium iodide,4,6-diamino-2-phenylindol dihydrochloride,and 2’,7’-dichlorofluorescein diacetate dyes.The uptake of fluorescent glucose analog,2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose by adipocytes was also studied through confocal microscopy.Results:MTT assay showed that the cell survival rate was(28.00±3.00)%,(92.33±2.60)%,and(71.34±2.10)%in the presence of 2 mM H2O2,AbPI alone,and AbPI and H2O2 both,respectively,in comparison to the control.Oil-Red-O staining indicated that Ab PI enhanced adipogenesis.AbPI stimulated the glucose uptake by adipocytes similar to the drug rosiglitazone,and showed insulinsensitizing effect in the presence of insulin,but failed to stimulate the uptake in the absence of insulin.Intracellular reactive oxygen species generation was reduced in differentiating adipocytes upon Ab PI treatment.Confocal microscopy showed that the damaged cell population rose to 3.50%,117.84%,and 261.50%in the presence of Ab PI alone,AbPI with H2O2,and H2O2 alone,respectively.Conclusions:The protease inhibitor enhances glucose uptake by adipocytes and exhibits a cytoprotective effect on them.展开更多
基金This work was supported in part by,grants from the National Key R&D Program of China(Nos.2021YFC2301900 and 2301904)the National Natural Science Foundation of China(Nos.81930062,81672004 to ZWY,and 31900457,82272304 to GWY)+2 种基金the Science and Technology Department,of Jilin_Province,(Nos.20190101003JH,20200201422JC,20190201272JC,YDZJ202201ZYTS671,and YDZJ202201ZYTS590)Program of Jilin Finance Department(No.2019SRCJ017)the Key Laboratory of Molecular Virology,Jilin Province(No.20102209).
文摘Background: Ubiquitination plays an essential role in many biological processes, including viral infection, and can be reversed by deubiquitinating enzymes (DUBs). Although some studies discovered that DUBs inhibit or enhance viral infection by various mechanisms, there is lack of information on the role of DUBs in virus regulation, which needs to be further investigated.Methods: Immunoblotting, real-time polymerase chain reaction,in vivo/in vitro deubiquitination, protein immunoprecipitation, immunofluorescence, and co-localization biological techniques were employed to examine the effect of ubiquitin-specific protease 3 (USP3) on APOBEC3G (A3G) stability and human immunodeficiency virus (HIV) replication. To analyse the relationship between USP3 and HIV disease progression, we recruited 20 HIV-infected patients to detect the levels of USP3 and A3G in peripheral blood and analysed their correlation with CD4^(+) T-cell counts. Correlation was estimated by Pearson correlation coefficients (for parametric data).Results: The results demonstrated that USP3 specifically inhibits HIV-1 replication in an A3G-dependent manner. Further investigation found that USP3 stabilized 90% to 95% of A3G expression by deubiquitinating Vif-mediated polyubiquitination and blocking its degradation in an enzyme-dependent manner. It also enhances the A3G messenger RNA (mRNA) level by binding to A3G mRNA and stabilizing it in an enzyme-independent manner. Moreover, USP3 expression was positively correlated with A3G expression (r= 0.5110) and CD4^(+) T-cell counts (r= 0.5083) in HIV-1-infected patients.Conclusions: USP3 restricts HIV-1 viral infections by increasing the expression of the antiviral factor A3G. Therefore, USP3 may be an important target for drug development and serve as a novel therapeutic strategy against viral infections.
基金Anhui Provincial Health Research Project,No.AHWJ2022c036.
文摘BACKGROUND Colorectal cancer(CRC)is one very usual tumor together with higher death rate.Ubiquitin-specific protease 21(USP21)has been confirmed to take part into the regulation of CRC progression through serving as a facilitator.Interestingly,the promotive function of USP21 has also discovered in the progression of CRC.ZEB1 has illustrated to be modulated by USP7,USP22 and USP51 in cancers.However,the regulatory functions of USP21 on ZEB1 in CRC progression need more invest-igations.AIM To investigate the relationship between USP21 and ZEB1 in CRC progression.METHODS The mRNA and protein expressions were assessed through RT-qPCR,western blot and IHC assay.The interaction between USP21 and ZEB1 was evaluated through Co-IP and GST pull down assays.The cell proliferation was detected through colony formation assay.The cell migration and invasion abilities were determined through Transwell assay.The stemness was tested through sphere formation assay.The tumor growth was evaluated through in vivo mice assay.RESULTS In this work,USP21 and ZEB1 exhibited higher expression in CRC,and resulted into poor prognosis.Moreover,the interaction between USP21 and ZEB1 was further investigated.It was demonstrated that USP21 contributed to the stability of ZEB1 through modulating ubiquitination level.In addition,USP21 streng-thened cell proliferation,migration and stemness through regulating ZEB1.At last,through in vivo assays,it was illustrated that USP21/ZEB1 axis aggravated tumor growth.CONCLUSION For the first time,these above findings manifested that USP21 promoted tumorigenicity and stemness of CRC by deubiquitinating and stabilizing ZEB1.This discovery suggested that USP21/ZEB1 axis may provide novel sights for the treatment of CRC.
文摘Whether the 370-371insACA, 494T〉C, and 1423C〉T haplotype in ubiquitin-specific protease 26 (USP26) gene is associated with male infertility is controversial. To clarify this issue, we conducted a meta-analysis based on the most recent studies. Eligible studies were screened by using PubMed and Embase. Pooled odd ratio (OR) with 95% confidence interval (CI) was calculated with fixed effect models. Ten studies with 1603 patients and 2505 controls were included, Overall, the results indicated that there was an association between the haplotype and male infertile risk (OR = 1.74, 95% CI: 1.09-2.77). The OR calculated based on the five studies in Asia and three in Europe was 1.96 (95% CI: 1,05-3.67) and 1.54 (95% Ch 0.75-3.16) respectively, however, the OR was 0.86 (95% Ch 0.05-15,29) based on the two investigations in America. In addition, the data from the patients with azoospermia (AZO) showed an increased pooled OR of 2.35 (95% Cl: 1.22-4.50). In contrast, the studies with oligoasthenoteratozoospermia (OAT) exhibited that the pooled OR was 0,97 (95% Ch 0.43-2.16). Our analyses indicate that there is an association of alteration in USP26 with male infertility, especially in AZO and Asian population.
基金Acknowledgment We thank the laboratory, clinical and paramedical staff of the center of Reproductive Medicine, and the Departmerit of Forensic Medicine, Pathology for their assistance. We especially thank Dr Sheng-Bin Li for practical support. This study was supported by National Natural Science Foundation of China (No. 30471735) and Science & Technique Research Intensive Project of Education Ministry of China (No.105157) and Sci-Technical Development Project of Shaanxi Province, China (2005K15-G2, 2006K15-G4).
文摘Aim: To study the incidence of single nucleotide polymorphisms in ubiquitin-specific protease 26 (USP26) gene and its involvement in idiopathic male infertility in China. Methods: Routine semen analysis was performed. Infertility factors such as immunological, infectious and biochemical disorders were examined to select patients with idiopathic infertility. DNA was isolated from peripheral blood of the selected patients and control population, which were examined for mutations using polymerase chain reaction-single strand conformation polymorphism analysis. Furthermore, nucleotide sequences were sequenced in some patients and controls. Results: Of 41 infertile men, 9 (22.0%, P = 0.01) had changes in USP26 gene on the X chromosome. A compound mutation (364insACA; 460G→A) was detected in 8 patients (19.5%, P = 0.01) and a 1044T→A substitution was found in 1 patient (2.4%, P 〉 0.05). All three variations led to changes in the coding amino acids. Two substitutions predict some changes: 460G→ A changes a valine into an isoleucine, and 1044T → A substitutes a leucine for a phenylalanine. Another insertion of three nucleotides ACA causes an insertion of threonine. No other changes were found in the remaining patients and fertile controls. Conclusion: The USP26 gene might be of importance in male reproduction. Mutations in this gene might be associated with male infertility, and might negatively affect testicular function. Further research on this issue is in progress.
基金Supported by the National Natural Science Foundation of China,No.81679154
文摘BACKGROUND Intestinal ischemia reperfusion(I/R) injury is a serious but common pathophysiological process of many diseases, resulting in a high mortality rate in clinical practice. Ubiquitin-specific protease 22(USP22) acts as regulator of cell cycle progression, proliferation, and tumor invasion. Depleted USP22 expression has been reported to contribute to arrested cell cycle and disrupted generation of differentiated cell types in crypts and villi. However, the role of USP22 in intestinal damage recovery has not been investigated. Therefore, elucidation of the underlying mechanism of USP22 in intestinal I/R injury may help to improve the tissue repair and patient prognosis in clinical practice.AIM To investigate the role of USP22 in intestinal cell proliferation and regeneration after intestinal I/R injury.METHODS An animal model of intestinal I/R injury was generated in male Sprague-Dawley rats by occlusion of the superior mesenteric artery followed by reperfusion.Chiu's scoring system was used to grade the damage to the intestinal mucosa. An in vitro model was developed by incubating rat intestinal epithelial IEC-6 cells in hypoxia/reoxygenation conditions in order to simulate I/R in vivo. siRNA and overexpression plasmid were used to regulate the expression of USP22. USP22,Cyclin D1, and proliferating cell nuclear antigen(PCNA) expression levels were measured by Western blot analysis and immunohistochemistry staining. Cell survival(viability) and cell cycle were evaluated using the Cell Counting Kit-8and flow cytometry, respectively.RESULTS USP22 expression was positively correlated with the expression levels of PCNA and Cyclin D1 both in vivo and in vitro, which confirmed that USP22 was involved in cell proliferation and intestinal regeneration after intestinal I/R injury. Decreased levels of Cyclin D1 and cell cycle arrest were observed in the USP22 knockdown group(P < 0.05), while opposite results were observed in the USP22 overexpression group(P < 0.05). In addition, increased expression of USP22 was related to improved intestinal pathology or IEC-6 cell viability after I/R or hypoxia/reoxygenation. These results suggested that USP22 may exert a protective effect on intestinal I/R injury by regulating cell proliferation and facilitating tissue regeneration.CONCLUSION USP22 is correlated with promoting intestinal cell proliferation and accelerating intestinal tissue regeneration after intestinal I/R injury and may serve as a potential target for therapeutic development for tissue repair during intestinal I/R injury.
基金Supported by National Natural Science Foundation of China,No.81760432Science and Technology Department of Jiangxi Province,No.20202BBGL73036and Jiangxi Provincial Outstanding Young Talents Projects,No.20204BCJ23016.
文摘BACKGROUND Ubiquitin-specific protease 15(USP15)is an important member of the ubiquitinspecific protease family,the largest deubiquitinase subfamily,whose expression is dysregulated in many types of cancer.However,the biological function and the underlying mechanisms of USP15 in gastric cancer(GC)progression have not been elucidated.AIM To explore the biological role and underlying mechanisms of USP15 in GC progression.METHODS Bioinformatics databases and western blot analysis were utilized to determine the expression of USP15 in GC.Immunohistochemistry was performed to evaluate the correlation between USP15 expression and clinicopathological characteristics of patients with GC.A loss-and gain-of-function experiment was used to investigate the biological effects of USP15 on GC carcinogenesis.RNA sequencing,immunofluorescence,and western blotting were performed to explore the potential mechanism by which USP15 exerts its oncogenic functions.RESULTS USP15 was up-regulated in GC tissue and cell lines.The expression level of USP15 was positively correlated with clinical characteristics(tumor size,depth of invasion,lymph node involvement,tumor-node-metastasis stage,perineural invasion,and vascular invasion),and was related to poor prognosis.USP15 knockdown significantly inhibited cell proliferation,invasion and epithelialmesenchymal transition(EMT)of GC in vitro,while overexpression of USP15 promoted these processes.Knockdown of USP15 inhibited tumor growth in vivo.Mechanistically,RNA sequencing analysis showed that USP15 regulated the Wnt signaling pathway in GC.Western blotting confirmed that USP15 silencing led to significant down-regulation ofβ-catenin and Wnt/β-catenin downstream genes(c-myc and cyclin D1),while overexpression of USP15 yielded an opposite result and USP15 mutation had no change.Immunofluorescence indicated that USP15 promoted nuclear translocation ofβ-catenin,suggesting activation of the Wnt/β-catenin signaling pathway,which may be the critical mechanism promoting GC progression.Finally,rescue experiments showed that the effect of USP15 on gastric cancer progression was dependent on Wnt/β-catenin pathway.CONCLUSION USP15 promotes cell proliferation,invasion and EMT progression of GC via regulating the Wnt/β-catenin pathway,which suggests that USP15 is a novel potential therapeutic target for GC.
基金Supported by the National Natural Science Foundation of China,No.81472598Project of Xijing Hospital,No.XJZT18MJ30.
文摘Breast cancer is the most frequently diagnosed cancer in women,accounting for 30%of new diagnosing female cancers.Emerging evidence suggests that ubiquitin and ubiquitination played a role in a number of breast cancer etiology and progression processes.As the primary deubiquitinases in the family,ubiquitin-specific peptidases(USPs)are thought to represent potential therapeutic targets.The role of ubiquitin and ubiquitination in breast cancer,as well as the classification and involvement of USPs are discussed in this review,such as USP1,USP4,USP7,USP9X,USP14,USP18,USP20,USP22,USP25,USP37,and USP39.The reported USPs inhibitors investigated in breast cancer were also summarized,along with the signaling pathways involved in the investigation and its study phase.Despite no USP inhibitor has yet been approved for clinical use,the biological efficacy indicated their potential in breast cancer treatment.With the improvements in phenotypic discovery,we will know more about USPs and USPs inhibitors,developing more potent and selective clinical candidates for breast cancer.
文摘Objective Ubiquitin-specific protease 4(USP4)facilitates the development of transforming growth factor-beta 1(TGF-β1)-induced epithelial-mesenchymal transition(EMT)in various cancer cells.Moreover,EMT of renal tubular epithelial cells(RTECs)is required for the progression of renal interstitial fibrosis.However,the role of USP4 in EMT of RTECs remains unknown.The present study aimed to explore the effect of USP4 on the EMT of RTECs as well as the involved mechanism.Methods In established unilateral ureteral obstruction(UUO)rats and NRK-52E cells,immunohistochemistry and Western blot assays were performed.Results USP4 expression was increased significantly with obstruction time.In NRK-52E cells stimulated by TGF-β1,USP4 expression was increased in a time-dependent manner.In addition,USP4 silencing with specific siRNA indicated that USP4 protein was suppressed effectively.Meanwhile,USP4 siRNA treatment restored E-cadherin and weakened alpha smooth muscle actin(α-SMA)expression,indicating that USP4 may promote EMT.After treatment with USP4 siRNA and TGF-β1 for 24 h,the expression of TGF-β1 receptor type I(TβRI)was decreased.Conclusion USP4 promotes the EMT of RTECs through upregulating TβRI,thereby facilitating renal interstitial fibrosis.These findings may provide a potential target of USP4 in the treatment of renal fibrosis.
文摘BACKGROUND Hepatitis C virus genotype 3a(HCV G3a)is highly prevalent in Pakistan.Due to the elevated cost of available Food and Drug Administration-approved drugs against HCV,medicinal natural products of potent antiviral activity should be screened for the cost-effective treatment of the disease.Furthermore,from natural products,active compounds against vital HCV proteins like non-structural protein 3(NS3)protease could be identified to prevent viral proliferation in the host.AIM To develop cost-effective HCV genotype 3a NS3 protease inhibitors from citrus fruit extracts.METHODS Full-length NS3 without co-factor non-structural protein 4A(NS4A)and codon optimized NS3 protease in fusion with NS4A were expressed in Escherichia coli.The expressed protein was purified by metal ion affinity chromatography and gel filtration.Citrus fruit extracts were screened using fluorescence resonance energy transfer(FRET)assay against the protease and polyphenols were identified as potential inhibitors using electrospray ionization-mass spectrometry(MS)/MS technique.Among different polyphenols,highly potent compounds were screened using molecular modeling approaches and consequently the most active compound was further evaluated against HCV NS4A-NS3 protease domain using FRET assay.RESULTS NS4A fused with NS3 protease domain gene was overexpressed and the purified protein yield was high in comparison to the lower yield of the full-length NS3 protein.Furthermore,in enzyme kinetic studies,NS4A fused with NS3 protease proved to be functionally active compared to full-length NS3.So it was concluded that co-factor NS4A fusion is essential for the purification of functionally active protease.FRET assay was developed and validated by the half maximal inhibitory concentration(IC50)values of commercially available inhibitors.Screening of citrus fruit extracts against the native purified fused NS4A-NS3 protease domain showed that the grapefruit mesocarp extract exhibits the highest percentage inhibition 91%of protease activity.Among the compounds identified by LCMS analysis,hesperidin showed strong binding affinity with the protease catalytic triad having S-score value of-10.98.CONCLUSION Fused NS4A-NS3 protease is functionally more active,which is effectively inhibited by hesperidin from the grapefruit mesocarp extract with an IC50 value of 23.32μmol/L.
文摘A series of N1-substituted-3-aryl-4-alkyl-4, 5-dihydro-1H-1-pyrazolethiocarboxamide were prepared from the Mannich bases of aryl ketones in good yields. Some derivatives were found to be active against the cysteine protease of T.cruzi..
文摘Background:Since the emergence of coronavirus disease 2019 to date,there is no available approved drug or definitive treatment for coronavirus disease 2019 viral infection,and the identification of novel hits against therapeutic targets has become a global emergency.Echinacea purpurea is a traditional herb utilized to treat cough,fever,sore throat,respiratory tract infection,and so on as an immune stimulant.In this study,in silico molecular docking approach was used to screen phytocompounds from E.purpurea against severe acute respiratory syndrome coronavirus 2 main protease 3C-like protease(3CLpro)and severe acute respiratory syndrome coronavirus main peptidase(96%sequence similarity)to blunt the viral gene expression and viral replication.Methods:Initially,we screened phytocompounds for their druggability and ADMET property.Furthermore,x-ray crystallographic structures of main proteases 3CLpro and main peptidase having Protein Data Bank ID 6LU7 and 2GTB were used as protein targets for the identification of potential drug candidates.We performed docking using AutoDock Vina by PyRx 0.8 software.BIOVIA Discovery Studio Visualizer v2019 was used to analyze ligand-protein complex.The probable protein targets of the selected compound were predicted by BindingDB(P≥0.7).STRING and Kyoto Encyclopedia of Genes and Genomes pathways are utilized to identify the molecular pathways modulated by the predicted targets(FDR≤0.05),and the network interaction between compounds and protein pathways was constructed by Cytoscape 3.6.1.Results:Among all the compounds,chlorogenic acid showed druggable characteristics and scored the lowest binding energy with main protease and main peptidase via interacting with active site 1 domain amino acid residues.Interestingly,chlorogenic acid interacted with Phe140 main protease 3CLpro,which is potentially involved in the dimerization.Enrichment analysis identified chlorogenic acid to modulate insulin resistance,necroptosis,interleukin-17,tumor necrosis factor signaling pathway,legionellosis,T helper 17 cell differentiation,advanced glycation end products and receptor for advanced glycation end products,mitogen-activated protein kinase,Ras,estrogen,vascular endothelial growth factor,B-cell receptor,nuclear factor kappa B,Rap1,hypoxia inducible factor-1,phosphatidylinositide 3-kinase-Akt,insulin,mechanistic target of rapamycin,p53,retinoic acid inducible gene I like receptor,and ErbB signaling pathways.Conclusion:Chlorogenic acid may act as a potent main protease 3CLpro inhibitor and may also inhibit the severe acute respiratory syndrome coronavirus 2 dimerization,viral gene expression,and replication within the lung epithelium.Chlorogenic acid may go a long way in finding one of the multipronged solutions to tackle coronavirus disease 2019 viral infection in the future.
文摘Objective:To explore the effect of the protease inhibitor from Agaricus bisporus(J.E.Lange)Imbach(AbPI)on glucose uptake and oxidative stress in 3 T3-L1 adipocytes.Methods:Adipocytes were differentiated and stained with OilRed-O staining to confirm adipogenesis.The toxic/protective effect of AbPI on the adipocytes was determined by MTT assay,intracellular reactive oxygen species generation through flow cytometry,and morphologically through confocal microscopy using propidium iodide,4,6-diamino-2-phenylindol dihydrochloride,and 2’,7’-dichlorofluorescein diacetate dyes.The uptake of fluorescent glucose analog,2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose by adipocytes was also studied through confocal microscopy.Results:MTT assay showed that the cell survival rate was(28.00±3.00)%,(92.33±2.60)%,and(71.34±2.10)%in the presence of 2 mM H2O2,AbPI alone,and AbPI and H2O2 both,respectively,in comparison to the control.Oil-Red-O staining indicated that Ab PI enhanced adipogenesis.AbPI stimulated the glucose uptake by adipocytes similar to the drug rosiglitazone,and showed insulinsensitizing effect in the presence of insulin,but failed to stimulate the uptake in the absence of insulin.Intracellular reactive oxygen species generation was reduced in differentiating adipocytes upon Ab PI treatment.Confocal microscopy showed that the damaged cell population rose to 3.50%,117.84%,and 261.50%in the presence of Ab PI alone,AbPI with H2O2,and H2O2 alone,respectively.Conclusions:The protease inhibitor enhances glucose uptake by adipocytes and exhibits a cytoprotective effect on them.