期刊文献+
共找到1,040篇文章
< 1 2 52 >
每页显示 20 50 100
Evaluation of the Shear Strength of Perfobond Rib Connectors in Ultra High Performance Concrete 被引量:4
1
作者 Jae Yoon Kang Jong Sup Park +1 位作者 Woo Tai Jung Moon Seoung Keum 《Engineering(科研)》 2014年第13期989-999,共11页
Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is perf... Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action. The comparison with the predictions obtained by the previous models shows that the experimental results are close to the values given by the model proposed by Oguejiofor and Hosain [1]. 展开更多
关键词 Perfobond RIB CONNECTOR Ultra high performance concrete Push-Out Test SHEAR strength
下载PDF
A Study on the Bond Strength between High Performance Concrete and Reinforcing Bar 被引量:2
2
作者 Eun Suk Choi Jung Woo Lee +1 位作者 Seong Jun Kim Jong Won Kwark 《Engineering(科研)》 2015年第7期373-378,共6页
As a preliminary study for the erection of floating structures using high performance concrete, this paper examines the bond characteristics between concrete and the reinforcing bar. Since the floating structure is co... As a preliminary study for the erection of floating structures using high performance concrete, this paper examines the bond characteristics between concrete and the reinforcing bar. Since the floating structure is constructed in aquatic environment, corrosion of the reinforcing steel is likely to develop more prematurely than in onshore structure in case of concrete cracking. A solution to this corrosion problem could use FRP rebar instead of steel reinforcement. To that goal, an experimental study is conducted on the concrete-FRP bond strength to verify if such FRP rebar develops performance comparable to the conventional steel rebar. A series of tests are performed considering the bond length of ordinary steel rebar and G-FRP rebar as test variable with respect to the strength of concrete, and the results are presented. 展开更多
关键词 FRP REINFORCEMENT high performance concrete BOND strength concrete strength BOND LENGTH
下载PDF
STUDY ON OPTIMIZATION OF HIGH PERFORMANCE CONCRETE ADMIXTURES 被引量:7
3
作者 刘俊龙 麻海燕 +2 位作者 李强 陈树东 张云清 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期206-210,共5页
Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polyca... Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polycarboxlic series high range water reduce agent and sodium sulfate hardening accelerating agent. Two kinds of curing condition, namely steam curing condition and standard curing condition, are adopted. The result shows that HPC, added with polycarboxlic series of high performance water reducer, has high workability and strength, while sodium sulfate accelerating agent causes poor workability and low strength. Thus for vapor-cured HPC and its formulations, naphthalene series high range water reducing agent with less sodium sulfate should be given pri- ority. Therefore, the differences of curing conditions should be considered when selecting HPC admixtures. 展开更多
关键词 high performance concrete high performance water reducer hardening accelerating agent SLUMP compressive strength
下载PDF
Seismic Performance of High-Strength Short Concrete Column with High-Strength Stirrups Constraints 被引量:2
4
作者 Hongyan Ding Yuan Liu +1 位作者 Chao Han Yaohua Guo 《Transactions of Tianjin University》 EI CAS 2017年第4期360-369,共10页
The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The inf... The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The influences of reinforcement strength, stirrup ratio and shear span ratio were also compared. Test results reveal that the restriction effect of stirrups can improve the peak stress, so the bearing capacity of specimen can be improved; for the high-strength short concrete column with high-strength stirrups, it was more reasonable to use ultimate displacement angle to reflect the ductility of the specimen, and the yield strength of high-strength stirrups should be devalued when calculating the stirrup characteristic value; the seismic performance of short column would be improved with the increase of volume–stirrup ratio and shear span ratio; the high-strength stirrups and high-strength longitudinal reinforcements did not yield when the load acting on the specimen reached the peak value, which brought adequate safety stock to these short columns. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Columns (structural) concrete construction concreteS HYSTERESIS Reinforced concrete Reinforcement Seismic waves SEISMOLOGY Shear flow
下载PDF
FAILURE MODE AND CONSTITUTIVE MODEL OF PLAIN HIGH-STRENGTH HIGH-PERFORMANCE CONCRETE UNDER BIAXIAL COMPRESSION AFTER EXPOSURE TO HIGH TEMPERATURES 被引量:2
5
作者 Zhenjun He Yupu Song 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期149-159,共11页
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for char... An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures uniaxial biaxial compressive strength failure criterion stress-strain relationship
下载PDF
Strength Regularity and Failure Criterion of High-Strength High-Performance Concrete under Multiaxial Compression 被引量:1
6
作者 何振军 宋玉普 《Journal of Southwest Jiaotong University(English Edition)》 2008年第2期144-149,共6页
Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were p... Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified. 展开更多
关键词 high-strength high-performance concrete (HSHPC) Normal strength concrete (NSC) Stress ratio Multiaxial corn- pressive slxength Failure criterion
下载PDF
Seismic Performance of Steel Reinforced Ultra High-strength Concrete Columns 被引量:1
7
作者 贾金青 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2009年第3期216-222,230,共8页
The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of e... The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of experimental specimens ranged from 92.9 MPa to 108.1 MPa.The main experimental variables affecting seismic performance of specimens were axial load ratio and stirrup reinforcement ratio.The columns(λ=2.75) subjected to low cyclic reversed lateral loads failed mainly in the flexural-shear mode failure and columns(λ≤2.0) subjected to low cyclic reversed lateral loads failed mainly in the shear mode failure.Shear force-displacement hysteretic curves and skeleton curves were drawn.Coefficient of the specimen displacement ductility was calculated.Experimental results indicate that ductility decreases with axial pressure ratio increasing,and increases with stirrup reinforcement ratio increasing.Limit values of axial pressure ratio and minimum stirrup reinforcement ratio of columns are proposed to satisfy definite ductility requirement.The suggested values provide a reference for engineering application and for the amendment of the current Chinese design code of steel reinforced concrete composite structures. 展开更多
关键词 建筑结构 建筑物 抗震设计 混凝土结构
下载PDF
Characterization of Surface Hardness and Microstructure of High Performance Concrete 被引量:3
8
作者 杨永敢 张云升 SHE Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第1期124-132,共9页
The relationship between compressive strength obtained by universal testing machine and rebound value obtained by the hammer of high performance concrete was systematically investigated at the macro level. And a model... The relationship between compressive strength obtained by universal testing machine and rebound value obtained by the hammer of high performance concrete was systematically investigated at the macro level. And a model of high performance concrete strength curve was established from them. At the micro level, the microstructure, hydration products and pore structure of concrete surface were analyzed by scanning electron microscopy(SEM), comprehensive thermal analysis(TG-DSC) and mercury intrusion porosimetry(MIP), respectively. The effect of carbonation on surface strength was also investigated. The results showed that the concrete surface hardness layer grew rapidly at early stage and then stabilized at last with ongoing curing age; the rebound value and compressive strength of concrete with slag were higher than those of concrete with the same content of fly ash. In addition, the strength curve obtained by the least square method can satisfy the local standard requirements with an average relative error of 8.9% and a relative standard deviation of 11.3%. When the carbonation depth was 6 mm, the compressive strength calculated by national uniform strength curve was 25 PMa higher than that by high performance concrete. 展开更多
关键词 high performance concrete rebound test parameter analysis strength curve
下载PDF
Influence of shrinkage-reducing admixture on drying shrinkage and mechanical properties of high-performance concrete 被引量:5
9
作者 Nguyen Quangphu Jiang Linhua +2 位作者 Liu Jiaping Tian Qian Do Tienquan 《Water Science and Engineering》 EI CAS 2008年第4期67-74,共8页
High-performance concrete (HPC) has specific performance advantages over conventional concrete in strength and durability. HPC mixtures are usually produced with water/binder mass ratios (mW/mB) in the range of 0.... High-performance concrete (HPC) has specific performance advantages over conventional concrete in strength and durability. HPC mixtures are usually produced with water/binder mass ratios (mW/mB) in the range of 0.2-0.4, so volume changes of concrete as a result of drying, chemical reactions, and temperature change cannot be avoided. For these reasons, shrinkage and cracking are frequent phenomena. It is necessary to add some types of admixture for reduction of shrinkage and cracking of HPC. This study used a shrinkage-reducing admixture (SRA) for that purpose. Concrete was prepared with two different mW/mB (0.22 and 0.40) and four different mass fractions of SRA to binder (w(SRA) = 0%, 1%, 2%, and 4%). The mineral admixtures used for concrete mixes were: 25% fly ash (FA) and 25% slag by mass of binder for the mixture with mW/mB = 0.40, and 15% silica fume (SF) and 25% FA for the mixture with mW/mB = 0.22. Tests were conducted on 24 prismatic specimens, and shrinkage strains were measured through 120 days of drying. Compressive strength, splitting strength, and static modulus of elasticity were also determined. The results show that the SRA effectively reduces some mechanical properties of HPC. The reductions in compressive strength, splitting tensile strength, and elastic modulus of the concrete were 7%-24%, 9%-19%, and 5%-12%, respectively, after 90 days, compared to concrete mixtures without SRA. SRA can also help reduce drying shrinkage of concrete. The shrinkage strains of HPC with SRA were only as high as 41% of the average free shrinkage of concrete without SRA after 120 days of drying. 展开更多
关键词 high-performance concrete shrinkage-reducing admixture compressive strength elastic modulus splitting tensile strength drying shrinkage
下载PDF
Design of Eco-friendly Ultra-high Performance Concrete with Supplementary Cementitious Materials and Coarse Aggregate 被引量:4
10
作者 JIANG Jinyang ZHOU Wenjing +4 位作者 CHU Hongyan WANG Fengjuan WANG Liguo FENG Taotao GUO Dong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1350-1359,共10页
Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, f... Aiming to investigate the mix design of eco-friendly UHPC with supplementary cementitious materials and coarser aggregates, we comprehensively studied the workability, microstructure, porosity, compressive strength, flexural strength, and Young’s modulus of UHPC. Relationship between compressive strength and Young’s modulus was obtained eventually. It is found that the compressive strength, flexural strength, and Young’s modulus of UHPC increase by 19.01%, 10.81%, and 5.99%, respectively, when 40 wt% cement is replaced with supplementary cementitious materials. The relationship between compressive strength and Young’s modulus of UHPC is an exponential form. 展开更多
关键词 ultra-high perform ance concrete ECO-FRIENDLY POROSITY compressive strength flexural strength Young’s modulus
下载PDF
A Simple Mix Proportion Design Method Based on Frost Durability for Recycled High Performance Concrete Using Fully Coarse Recycled Aggregate 被引量:2
11
作者 王新杰 LIU Wenying +2 位作者 WEI Da 朱平华 胡坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1119-1124,共6页
Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix propo... Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use. 展开更多
关键词 recycled high performance concrete mix proportion design frost durability compressive strength water absorption
下载PDF
Spalling and Mechanical Properties of Fiber Reinforced High-performance Concrete Subjected to Fire 被引量:3
12
作者 董香军 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第5期743-749,共7页
Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC).... Spalling and mechanical properties of FRHPC subjected to fire were tested on notched beams. The results confirm that the internal vapor pressure is the leading reason for spalling of high-performance concrete (HPC). At the same time, the temperature-increasing velocity and constrained conditions of concrete element also play significant roles in spalling. Steel fibers cannot reduce the risk of spalling, although they have obvious beneficial effects on the mechanical properties of concrete before and after exposure to fire. Polypropylene (PP) fibers are very useful in preventing HPC from spalling, however, they have negative effects on the strengths. By using hybrid fibers (steel fibers+PP fibers), both good anti-spalling performance and improved mechanical properties come true, which may provide necessary safe guarantee for the rescue work and structure repair after fire disaster. 展开更多
关键词 fiber reinforced high-performance concrete (FRHPC) FIRE SPALLING compressive strength flexural toughness
下载PDF
Different Curing Systems on Mechanical Properties of Ultra-High Performance Concrete with Coarse Aggregate
13
作者 赵秋 杨明 +1 位作者 庄一舟 聂宇 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期492-497,共6页
High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-ea... High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage. 展开更多
关键词 ultra-high performance concrete(UHPC) coarse aggregate curing system strength MICROSTRUCTURE
下载PDF
Effects of Elevated Temperature and Storage Mode on High Performance Concrete Behavior
14
作者 Nadia Tebbal Zine El Abidine Rahmouni Hadda Hadjab 《材料科学与工程(中英文A版)》 2013年第4期243-248,共6页
关键词 混凝土性能 高温诱导 存储模式 各向异性材料 隧道火灾 安全评价 机械性能 化学变化
下载PDF
Preparation for Retarding and High Early Strength Concrete
15
作者 胡志坚 FENG Hao WANG Xuefei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期787-789,共3页
The primary objective of this research was to determine optimum dosage of mixing concrete containing plasticizers and fly ash, consistent with desirable structural grade concrete properties. Factorial tests were also ... The primary objective of this research was to determine optimum dosage of mixing concrete containing plasticizers and fly ash, consistent with desirable structural grade concrete properties. Factorial tests were also conducted to investigate the four main factors: water-cementing materials ratio, water content, content of superplasticizers (SP) and fly ash content. It was found that the requirement for setting time played the dominant role in shrinkage and anti-cracking, and fly ash played a critical role in workability and reducing heat of hydration but showed insignificant effects on slump, early strength and initial setting time of concrete. 展开更多
关键词 high slump maintaining performance fly ash retarding and high early strength concrete initial setting time heat of hydration
下载PDF
Seismic Behavior of Steel Reinforced Ultra High Strength Concrete Column and Reinforced Concrete Beam Connection
16
作者 闫长旺 贾金青 张菊 《Transactions of Tianjin University》 EI CAS 2010年第4期309-316,共8页
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens... To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application. 展开更多
关键词 seismic performance steel reinforced ultra high strength concrete CONNECTION applied axial load ratio volumetric stirrup ratio
下载PDF
Shrinkage, Strength of High and Ordinary Concrete Incorporating Kosovo and Japanese Fly-ash
17
作者 Anjeza Alaj Tatsuya Numao 《Journal of Environmental Science and Engineering(A)》 2016年第9期444-451,共8页
Ordinary and high performance concrete (OC-C 25/30 and HPC C-50/60) made with fly ash has found numerous applications all over the world since 1970. In Kosovo, fly ash as cement substitution in concrete has not been... Ordinary and high performance concrete (OC-C 25/30 and HPC C-50/60) made with fly ash has found numerous applications all over the world since 1970. In Kosovo, fly ash as cement substitution in concrete has not been utilized yet despite the large amount that is produced annually and the positive economical-environment aspects of such technique. This hesitance is due to the laek of experience in the concrete engineering field and because of the chemical composition of Kosovo fly ash, which is classified as non-standard high calcium fly ash (KF). In light of this fact, this study intended to develop further. So, this paper reports the consistency, workability, shrinkage, high and ordinary compressive strength of concrete containing different percentage of non-class high calcium fly ash as Portland cement substitution (first case-Kosovo fly ash KF) comparing results with F class-low caleium fly ash content (second ease-Japanese fly ash JF) which is common used as cement replacement. 展开更多
关键词 Non-standard fly ash ordinary and high performance concrete compressive strength shrinkage.
下载PDF
Analysis of Compressive Strength Development of Ultra-high Performance Concrete
18
作者 HAN Fangyu LIU Jianzhong +2 位作者 ZHANG Qianqian LIU Jiaping SHI Liang 《Journal of the Chinese Ceramic Society》 2016年第3期145-152,共8页
A numerical procedure was presented for evaluating the compressive strength development of ultra-high performance concrete(UHPC) with cement-silica fume-slag binder.This numerical procedure started with initial packin... A numerical procedure was presented for evaluating the compressive strength development of ultra-high performance concrete(UHPC) with cement-silica fume-slag binder.This numerical procedure started with initial packing behavior of designed UHPC using a random sequential packing method.Furthermore,synergistic effect of combined mineral admixtures was addressed with respect to hydration heat.Accordingly,hydration degree of cement and reaction degrees of mineral admixtures were determined based on a blended cement hydration model.Finally,a compressive strength evolution model was proposed and the evolution of compressive strength of three mixes with different binder recipes was compared.The results showed that the both initial packing behavior of UHPC mixes and synergistic effect of mineral admixtures are critical for predicting the properties of UHPC.A remarkable void fraction of 0.2042 was observed for UHPC mix designed by optimization algorithms under random packing.Furthermore,a negative synergistic effect of the combination of silica fume and slag was obtained with regarding to compressive strength.In addition,for a given mineral admixture replacement of 20%,the formulation of mineral admixture should be carefully tailored where the UHPC incorporating 5%silica fume and 15%slag shows the highest compressive strength. 展开更多
关键词 ultra-high performance concrete initial packing behavior hydration model compressive strength
原文传递
高强钢管超高性能混凝土短柱轴压承载力性能试验研究 被引量:1
19
作者 陈俊 王秋湛 +3 位作者 郭鸣琴 曾琳惠 张学兵 谭鑫阳 《湘潭大学学报(自然科学版)》 CAS 2024年第2期20-34,共15页
为研究高强钢管内填超高性能混凝土(UHPC)的钢管混凝土短柱轴压性能,该文设计22根高强钢管UHPC短柱进行轴压试验,从破坏模式、荷载-纵向应变关系对试件的轴压性能进行对比分析,旨在通过径厚比、混凝土强度、截面类型等变化来探究高强钢... 为研究高强钢管内填超高性能混凝土(UHPC)的钢管混凝土短柱轴压性能,该文设计22根高强钢管UHPC短柱进行轴压试验,从破坏模式、荷载-纵向应变关系对试件的轴压性能进行对比分析,旨在通过径厚比、混凝土强度、截面类型等变化来探究高强钢管UHPC短柱的实际承载力性能差异.试验结果表明:高强钢管UHPC短柱的轴压性能受径厚比、混凝土强度影响较大;试件承载力随钢管壁厚增加而增加,但相同钢管直径和不同钢管直径增幅呈现不同规律.该文从延性、核心混凝土强度提高程度两个角度进行分析并提出高强钢管混凝土试件的相关参数设计建议.最后,将高强钢管UHPC短柱的轴压试验承载力结果与国内外规范GB 50936—2014、AIJ计算承载力结果进行对比,并基于极限平衡理论推导出高强圆钢管UHPC试件的轴压承载力计算公式,同时结合该文试验数据对其进行验证,证明了公式的准确性. 展开更多
关键词 高强钢管 超高性能混凝土 钢管混凝土短柱 极限承载力 试验研究
下载PDF
海砂超高性能混凝土试验 被引量:1
20
作者 韦建刚 陈荣 +2 位作者 黄伟 卞学海 麻秀星 《重庆大学学报》 CAS CSCD 北大核心 2024年第2期14-21,共8页
采用未淡化的海砂制备超高性能混凝土(UHPC)和普通混凝土,研究了不同氯离子含量的海砂对UHPC抗压强度、孔结构、快速氯离子渗透性以及内置钢筋耐久性的影响,并与普通混凝土进行分析比较。结果表明,海砂中的氯离子含量对UHPC抗压强度并... 采用未淡化的海砂制备超高性能混凝土(UHPC)和普通混凝土,研究了不同氯离子含量的海砂对UHPC抗压强度、孔结构、快速氯离子渗透性以及内置钢筋耐久性的影响,并与普通混凝土进行分析比较。结果表明,海砂中的氯离子含量对UHPC抗压强度并不会产生较大的消极影响;海砂UHPC的临界孔半径约为2 nm,与海砂普通混凝土不同,孔隙率随海砂中氯含量的增加而增加;即使海砂氯离子含量高达0.636%,海砂UHPC的氯离子渗透性仍可忽略不计;海砂UHPC中钢筋在28 d后处于钝化状态并趋于稳定。 展开更多
关键词 海砂 超高性能混凝土 抗压强度 孔结构 耐久性
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部