An investigation is conducted on the static ultimate limit state assessment of ship hull plates with elastically restrained edges subjected to axial compression.Both material and geometric non-linearities were conside...An investigation is conducted on the static ultimate limit state assessment of ship hull plates with elastically restrained edges subjected to axial compression.Both material and geometric non-linearities were considered in finite element(FE)analysis.The initial geometric imperfection of the plate was considered,while the residual stress introduced by welding was not considered.The ultimate strength of simply supported ship hull plates compared well with the existing empirical formula to validate the correctness of the applied boundary conditions,initial imperfection and mesh size.The extensive FE calculations on the ultimate strength of ship hull plates with elastically restrained edges are presented.Then a new simple empirical formula for plate ultimate strength is developed,which includes the effect of the rotational restraint stiffness,rotational restraint stiffness,and aspect ratios.By applying the new formula and FE method to ship hull plates in real ships,a good coincidence of the results between these two methods is obtained,which indicates that the new formula can accurately predict the ultimate strength of ship hull plates with elastically restrained edges.展开更多
To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of struc...To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of structure. Depending on the FEM results, an elastic-plastic analysis was carried out to clarify the status of steel tube, then a simplified procedure was proposed to predict the compressive axial load strength. The results obtained from this procedure were compared with the test results. It is found that they agree well each other.展开更多
The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, ...The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.展开更多
文摘An investigation is conducted on the static ultimate limit state assessment of ship hull plates with elastically restrained edges subjected to axial compression.Both material and geometric non-linearities were considered in finite element(FE)analysis.The initial geometric imperfection of the plate was considered,while the residual stress introduced by welding was not considered.The ultimate strength of simply supported ship hull plates compared well with the existing empirical formula to validate the correctness of the applied boundary conditions,initial imperfection and mesh size.The extensive FE calculations on the ultimate strength of ship hull plates with elastically restrained edges are presented.Then a new simple empirical formula for plate ultimate strength is developed,which includes the effect of the rotational restraint stiffness,rotational restraint stiffness,and aspect ratios.By applying the new formula and FE method to ship hull plates in real ships,a good coincidence of the results between these two methods is obtained,which indicates that the new formula can accurately predict the ultimate strength of ship hull plates with elastically restrained edges.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50708027)National Key Technology R&D Program of China(Grant No.2006BAJ01B02)
文摘To study the behavior and design of tubed circular steel reinforced concrete (TCSRC) short column under axial compressive loads, a nonlinear finite element model (FEM) has been developed to simulate this kind of structure. Depending on the FEM results, an elastic-plastic analysis was carried out to clarify the status of steel tube, then a simplified procedure was proposed to predict the compressive axial load strength. The results obtained from this procedure were compared with the test results. It is found that they agree well each other.
基金Projects(51278209,51478047)supported by the National Natural Science Foundation of ChinaProject(2014FJ-NCET-ZR03)supported by the Program for New Century Excellent Talents in Fujian Provincial Universities,China+1 种基金Project(JA13005)supported by the Incubation Program for Excellent Young Science and Technology Talents in Fujian Provincial Universities,ChinaProject(ZQN-PY110)supported by the Young and Middle-aged Academic Staff of Huaqiao University,China
文摘The static tests of nine traditional and bird beak square hollow structure(SHS) T-joints with different β values and connection types under axial compression at brace end were carried out. Experimental test schemes, failure modes of specimens, jack load-vertical displacement curves, jack load-deformation of chord and strain intensity distribution curves of joints were presented. The effects of β and connection types on axial compression property of joints were studied. The results show that the ultimate axial compression capacity of common bird beak SHS T-joints and diamond bird beak SHS T-joints is larger than that of traditional SHS T-joint specimens with big values of β. The ultimate axial compression capacity of diamond bird beak SHS T-joints is larger than that of common bird beak SHS T-joints. As β increases, the increase of the ultimate axial compression capacity of diamond bird beak SHS T-joints over that of common bird beak joints grows. The ultimate axial compression capacity and the initial axial stiffness of all kinds of joints increase as β increases, and the initial axial stiffness of the diamond bird beak SHS T-joints is the largest. The ductilities of common bird beak and diamond bird beak SHS T-joints increase as β increases, but the ductility of the traditional SHS T-joints decreases as β increases.