期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Laplace-Transform Finite Element Solution of Nonlocal and Localized Stochastic Moment Equations of Transport 被引量:1
1
作者 Eric Morales-Casique Shlomo P.Neuman 《Communications in Computational Physics》 SCIE 2009年第6期131-161,共31页
Morales-Casique et al.(Adv.Water Res.,29(2006),pp.1238-1255)developed exact first and second nonlocal moment equations for advective-dispersive transport in finite,randomly heterogeneous geologic media.The velocity an... Morales-Casique et al.(Adv.Water Res.,29(2006),pp.1238-1255)developed exact first and second nonlocal moment equations for advective-dispersive transport in finite,randomly heterogeneous geologic media.The velocity and concentration in these equations are generally nonstationary due to trends in heterogeneity,conditioning on site data and the influence of forcing terms.Morales-Casique et al.(Adv.Water Res.,29(2006),pp.1399-1418)solved the Laplace transformed versions of these equations recursively to second order in the standard deviationσY of(natural)log hydraulic conductivity,and iteratively to higher-order,by finite elements followed by numerical inversion of the Laplace transform.They did the same for a space-localized version of the mean transport equation.Here we recount briefly their theory and algorithms;compare the numerical performance of the Laplace-transform finite element scheme with that of a high-accuracy ULTIMATE-QUICKEST algorithm coupled with an alternating split operator approach;and review some computational results due to Morales-Casique et al.(Adv.Water Res.,29(2006),pp.1399-1418)to shed light on the accuracy and computational efficiency of their recursive and iterative solutions in comparison to conditional Monte Carlo simulations in two spatial dimensions. 展开更多
关键词 Geologic media porous media random heterogeneity CONDITIONING stochastic transport moment equations NONLOCALITY localization Laplace transform finite elements ultimatequickest
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部