A technique for preparing perovskite type oxides was developed. By this technique, ultra fine particles of La 0.9 RE 0.1 MnO 3 (RE: Y, Ce, Pr, Sm, Gd,or Dy) with high surface area and single perovskite stru...A technique for preparing perovskite type oxides was developed. By this technique, ultra fine particles of La 0.9 RE 0.1 MnO 3 (RE: Y, Ce, Pr, Sm, Gd,or Dy) with high surface area and single perovskite structure were prepared, and the series of La 0.9 RE 0.1 MnO 3 catalysts were studied experimentally. The so prepared ultra fine particles exhibites high catalytic activity for CH 4 total oxidation. The ultra fine particles of La 0.9 RE 0.1 MnO 3 (except for La 0.9 Pr 0.1 MnO 3) prepared by this method are thermally much more stable than LaMnO 3. Of the La 0.9 RE 0.1 MnO 3 series, La 0.9 Y 0.1 MnO 3 is most thermally stable, and La 0.9 Y 0.1 MnO 3 or La 0.9 Gd 0.1 MnO 3 (varies with calcination temperature) exhibits the highest catalytic activity for total oxidation of methane. The specific surface area of La 0.9 Y 0.1 MnO 3 calcined at 1000 ℃ reaches 14.9 m 2·g -1 , while the specific surface area of LaMnO 3 calcined at the same temperature is only 1.8 m 2·g -1 .展开更多
The magnetic anisotropy of Fe 25 Ni 75 nanocrystallites in the range of 10~20 nm was measured by the law of approach to saturation. The samples were prepared by mechanical alloying process, and the average ...The magnetic anisotropy of Fe 25 Ni 75 nanocrystallites in the range of 10~20 nm was measured by the law of approach to saturation. The samples were prepared by mechanical alloying process, and the average crystal size was determined by X ray diffraction. The effective magnetic anisotropy of these fine particles is found in an order of 10 6 erg/cm 3 that is much greater than that of normal crystal size of particles. The dependence of magnetic anisotropy on the particle size was studied. It has been demonstrated that the strain anisotropy occupies the most of the total magnetic anisotropy, and the internal strain is a critical factor for their magnetic properties.展开更多
文摘A technique for preparing perovskite type oxides was developed. By this technique, ultra fine particles of La 0.9 RE 0.1 MnO 3 (RE: Y, Ce, Pr, Sm, Gd,or Dy) with high surface area and single perovskite structure were prepared, and the series of La 0.9 RE 0.1 MnO 3 catalysts were studied experimentally. The so prepared ultra fine particles exhibites high catalytic activity for CH 4 total oxidation. The ultra fine particles of La 0.9 RE 0.1 MnO 3 (except for La 0.9 Pr 0.1 MnO 3) prepared by this method are thermally much more stable than LaMnO 3. Of the La 0.9 RE 0.1 MnO 3 series, La 0.9 Y 0.1 MnO 3 is most thermally stable, and La 0.9 Y 0.1 MnO 3 or La 0.9 Gd 0.1 MnO 3 (varies with calcination temperature) exhibits the highest catalytic activity for total oxidation of methane. The specific surface area of La 0.9 Y 0.1 MnO 3 calcined at 1000 ℃ reaches 14.9 m 2·g -1 , while the specific surface area of LaMnO 3 calcined at the same temperature is only 1.8 m 2·g -1 .
文摘The magnetic anisotropy of Fe 25 Ni 75 nanocrystallites in the range of 10~20 nm was measured by the law of approach to saturation. The samples were prepared by mechanical alloying process, and the average crystal size was determined by X ray diffraction. The effective magnetic anisotropy of these fine particles is found in an order of 10 6 erg/cm 3 that is much greater than that of normal crystal size of particles. The dependence of magnetic anisotropy on the particle size was studied. It has been demonstrated that the strain anisotropy occupies the most of the total magnetic anisotropy, and the internal strain is a critical factor for their magnetic properties.