Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order t...Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.展开更多
Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were...Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were discussed by using the methods of dense well pattern, multi-factor geological modeling, macro and micro analysis and static and dynamic analysis. The results show that the low-amplitude structure always had a significant control and influence on the distribution and accumulation of original hydrocarbon and water and the evolution trend of water flooding performance in ultra-low permeability reservoirs, and it was not only the direction of oil and gas migration, but also a favorable place for relative accumulation of oil and gas. The controlling effect of low-amplitude structure on ultra-low permeability reservoir mainly depended on its tectonic amplitude and scale;the larger the tectonic amplitude and scale, and the higher the tectonic position of the low amplitude structure, the better the reservoir characteristic parameters, oil and gas enrichment degree and development effect, and the larger the spatial scope it controlled and influenced;water cut and oil well output always fluctuated orderly with the height of the low-amplitude structure;the dynamic response of waterflooding was closely related to the relative structural position of the injection and production wells;the injected water always advanced to the low-lying area of the structure first and then moved up to the high-lying area of the structure gradually;with the continuous expansion of the flooded area, part of the oil and gas in the low-lying part of the structure was forced to be distributed to the high part of the structure, resulting in a new oil and gas enrichment, so that the dynamic reserves of oil wells in the high part increased, and the production capacity remained stable.展开更多
To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for f...To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.展开更多
Based on the previous studies and development practice in recent 10 years, a quantitative evaluation method for the adaptability of well patterns to ultra-low permeability reservoirs was established using cluster anal...Based on the previous studies and development practice in recent 10 years, a quantitative evaluation method for the adaptability of well patterns to ultra-low permeability reservoirs was established using cluster analysis and gray correlation method, and it includes 10 evaluation parameters in the four aspects of optimal evaluation parameters, determination of weights for evaluation parameters, development stage division, and determination of classification coefficients. This evaluation method was used to evaluate the well pattern adaptability of 13 main ultra-low permeability reservoirs in Triassic Chang 6 and Chang 8 of Ordos Basin. Three basic understandings were obtained: Firstly, the well pattern for ultra-low permeability type-I reservoirs has generally good adaptability, with proper well pattern forms and well pattern parameters. Secondly, square inverted nine-spot well pattern is suitable for reservoirs with no fractures; rhombic inverted nine-spot injection pattern is suitable for reservoirs with some fractures; and rectangular well pattern is suitable for reservoirs with rich fractures. Thirdly, for the ultra-low permeability type-Ⅱ and type-Ⅲ reservoirs, with the principles of well pattern form determination, the row spacing needs to be optimized further to improve the level of development of such reservoirs.展开更多
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit...Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.展开更多
基金Financial support for this work from National Sciencetechnology Support Plan Projects (No. 2012BAC26B00)the Science Foundation of China University of Petroleum, Beijing (No.2462012KYJJ23)
文摘Gas flooding such as CO2 flooding may be effectively applied to ultra-low permeability reservoirs, but gas channeling is inevitable due to low viscosity and high mobility of gas and formation heterogeneity. In order to mitigate or prevent gas channeling, ethylenediamine is chosen for permeability profile control. The reaction mechanism of ethylenediamine with CO2, injection performance, swept volume, and enhanced oil recovery were systematically evaluated. The reaction product of ethylenediamine and CO2 was a white solid or a light yellow viscous liquid, which would mitigate or prevent gas channeling. Also, ethylenediamine could be easily injected into ultra-low permeability cores at high temperature with protective ethanol slugs. The core was swept by injection of 0.3 PV ethylenediamine. Oil displacement tests performed on heterogeneous models with closed fractures, oil recovery was significantly enhanced with injection of ethylenediamine. Experimental results showed that using ethylenediamine to plug high permeability layers would provide a new research idea for the gas injection in fractured, heterogeneous and ultra-low permeability reservoirs. This technology has the potential to be widely applied in oilfields.
基金Supported by Open Fund(PLC20190203)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology)the Natural Science Foundation of Shaanxi Province,China(2006Z07,2010JM5003)Youth Science and Technology Innovation Fund Project of Xi’an Petroleum University(2012BS010)
文摘Based on drilling, logging, test production and dynamic monitoring data, the control effects of low-amplitude structure on hydrocarbon accumulation and development performance of ultra-low permeability reservoirs were discussed by using the methods of dense well pattern, multi-factor geological modeling, macro and micro analysis and static and dynamic analysis. The results show that the low-amplitude structure always had a significant control and influence on the distribution and accumulation of original hydrocarbon and water and the evolution trend of water flooding performance in ultra-low permeability reservoirs, and it was not only the direction of oil and gas migration, but also a favorable place for relative accumulation of oil and gas. The controlling effect of low-amplitude structure on ultra-low permeability reservoir mainly depended on its tectonic amplitude and scale;the larger the tectonic amplitude and scale, and the higher the tectonic position of the low amplitude structure, the better the reservoir characteristic parameters, oil and gas enrichment degree and development effect, and the larger the spatial scope it controlled and influenced;water cut and oil well output always fluctuated orderly with the height of the low-amplitude structure;the dynamic response of waterflooding was closely related to the relative structural position of the injection and production wells;the injected water always advanced to the low-lying area of the structure first and then moved up to the high-lying area of the structure gradually;with the continuous expansion of the flooded area, part of the oil and gas in the low-lying part of the structure was forced to be distributed to the high part of the structure, resulting in a new oil and gas enrichment, so that the dynamic reserves of oil wells in the high part increased, and the production capacity remained stable.
基金Supported by Science Coordination New Project(2016KTCL01-12)
文摘To explore the method of improving development effect and solving the problem of water breakthrough and water out for ultralow permeability fractured reservoirs, an indoor evaluation method of dynamic imbibition for fracture-matrix system was established taking the Chang 8 reservoir in southern Yanchang Oilfield as a research target. Key factors for the imbibition effect were obtained, an imbibition's rate expression was obtained, a model considering the double effects of imbibition-displacement was built and optimal injection and production parameters for the research area were obtained as well. The results show that an optimum displacement rate that maximizes the oil displacement efficiency exists in the water displacing oil process, and the optimal displacing rate becomes smaller as the permeability decreases. The imbibition displacement efficiency increases as the reservoir quality index and water wettability index of rock become bigger. But the larger the initial water saturation or oil-water viscosity ratio is, the smaller the imbibition displacement efficiency is. The optimal injection-production ratio for the Chang 8 reservoir of southern Yanchang Oilfield is 0.95, and the predicted recovery is 17.2% when the water cut is 95%, it is 2.9% higher than the recovery of conventional injection-production ratio 1.2. By using the moderate water injection technique based on the double effects of imbibition-displacement mechanism, the water injection development effect for the ultra-low permeability fractured reservoirs can be improved significantly.
基金Supported by the China National Science and Technology Major Project(2016ZX05050 2017ZX05013-004)
文摘Based on the previous studies and development practice in recent 10 years, a quantitative evaluation method for the adaptability of well patterns to ultra-low permeability reservoirs was established using cluster analysis and gray correlation method, and it includes 10 evaluation parameters in the four aspects of optimal evaluation parameters, determination of weights for evaluation parameters, development stage division, and determination of classification coefficients. This evaluation method was used to evaluate the well pattern adaptability of 13 main ultra-low permeability reservoirs in Triassic Chang 6 and Chang 8 of Ordos Basin. Three basic understandings were obtained: Firstly, the well pattern for ultra-low permeability type-I reservoirs has generally good adaptability, with proper well pattern forms and well pattern parameters. Secondly, square inverted nine-spot well pattern is suitable for reservoirs with no fractures; rhombic inverted nine-spot injection pattern is suitable for reservoirs with some fractures; and rectangular well pattern is suitable for reservoirs with rich fractures. Thirdly, for the ultra-low permeability type-Ⅱ and type-Ⅲ reservoirs, with the principles of well pattern form determination, the row spacing needs to be optimized further to improve the level of development of such reservoirs.
基金supported by Open Fund (PLC201203) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)Major Project of Education Department in Sichuan Province (13ZA0177)
文摘Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.